Published online by Cambridge University Press: 03 April 2013
Red and near-infrared photons of longer wave lengths are poorly absorbed in thin film silicon cells and advanced light trapping methods are necessary. The physical mechanisms underlying the light trapping using periodic back reflectors are strong light diffraction, coupled with plasmonic light concentration. These are contrasted with the scattering mechanisms in randomly textured back reflectors. We describe a class of conformal solar cells with nanocone back reflectors with absorption at the Lambertian 4n2 limit, averaged over the “entire” wave length range for hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells. The absorption is theoretically found for 1-μm nc-Si:H cells, and is further enhanced for off-normal incidence. Predicted currents exceed 31 mA/cm2. Nc-Si:H solar cells with the same device architecture were conformally grown on periodic substrates and compared with randomly textured substrates. The periodic back reflector solar cells with nanopillars demonstrated higher quantum efficiency and photocurrents that were 1 mA/cm2 higher than those for the randomly textured back reflectors.