Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T18:19:31.907Z Has data issue: false hasContentIssue false

Enhancement of plasticity in Ti-based metallic glass matrix composites by controlling characteristic and volume fraction of primary phase

Published online by Cambridge University Press:  31 January 2011

K.R. Lim
Affiliation:
Center for Non-Crystalline Materials, Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul 120-749, South Korea
J.H. Na
Affiliation:
California Institute of Technology, Division of Engineering and Applied Science, Pasadena, California 91125
J.M. Park
Affiliation:
Center for Non-Crystalline Materials, Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul 120-749, South Korea; and IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany
W.T. Kim
Affiliation:
IT Division, Cheongju University, Cheongju 360-764, South Korea
D.H. Kim*
Affiliation:
Center for Non-Crystalline Materials, Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul 120-749, South Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, Ti-based metallic glass matrix composites with high plasticity have been developed by controlling characteristic and volume fraction of primary phase embedded in the glass matrix. By careful alloy design procedure, the compositions of β/glass phases, which are in metastable equilibrium have been properly selected, therefore the mechanical properties can be tailored by selecting the alloy compositions between the composition of β and glass phases. The relation between the compressive yield strength and volume fraction of β phase is well described using the rule of mixtures.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Byrne, C.J., Eldrup, M.: Bulk metallic glasses. Science 321, 502 (2008)CrossRefGoogle ScholarPubMed
2.Qin, F.X., Wang, X.M., Xie, G.Q., Inoue, A.: Distinct plastic strain of Ni-free Ti–Zr–Cu–Pd–Nb bulk metallic glasses with potential for biomedical applications. Intermetallics 16, 1026 (2008)Google Scholar
3.Lee, M.L., Li, Y., Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004)CrossRefGoogle Scholar
4.Park, E.S., Kim, D.H.: Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Met. Mater. Int. 11, 19 (2005)CrossRefGoogle Scholar
5.Szuecs, F., Kim, C.P., Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001)CrossRefGoogle Scholar
6.Pekarskaya, E., Kim, C.P., Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 9 (2001)Google Scholar
7.Hays, C.C., Kim, C.P., Johnson, W.L.: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng., A 304–306, 650 (2001)CrossRefGoogle Scholar
8.Jun, H.J., Lee, K.S., Kim, C.P., Chang, Y.W.: Temperature effects on mechanical properties, deformation behavior and formability of Zr–Ti–Cu–Ni–Be–Nb bulk metallic glass composite. Met. Mater. Int. 14, 297 (2008)CrossRefGoogle Scholar
9.Huang, Y.L., Bracchi, A., Niermann, T., Seibt, M., Danilov, D., Nestler, B., Schneider, S.: Dendritic microstructure in the metallic glass matrix composite Zr56Ti14Nb5Cu7Ni6Be12. Scr. Mater. 53, 93 (2005)CrossRefGoogle Scholar
10.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008)Google Scholar
11.Park, J.M., Kim, D.H., Kim, K.B., Fleury, E., Lee, M.H., Kim, W.T., Eckert, J.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni–Ta bulk glassy alloy via introducing the structural inhomogeneity. J. Mater. Res. 23, 2984 (2008)Google Scholar
12.Park, J.M., Chang, H.J., Han, K.H., Kim, W.T., Kim, D.H.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scr. Mater. 53, 1 (2005)CrossRefGoogle Scholar
13.Guo, F., Wang, H.J., Poon, S.J., Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005)Google Scholar
14.Lee, S.Y., Kim, C.P., Almer, J.D., Lienert, U., Ustundag, E., Johnson, W.L.: Pseudo-binary phase diagram for Zr-based in situ β phase composites. J. Mater. Res. 22, 2 (2007)CrossRefGoogle Scholar
15.Lin, L., Delaey, L., Van Der Biest, O., Wollants, P.: Calculation of isothermal sections of three ternary Ti–Zr–X systems. Scr. Mater. 34, 1411 (1996)CrossRefGoogle Scholar
16.He, M.Y., Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053 (1989)Google Scholar
17.Ikehata, H., Nagasako, N., Furuta, T., Fukumoto, A., Miwa, K., Saito, T.: First-principles calculations for development of low elastic modulus Ti alloys. Phys. Rev. B 70, 174113 (2004)CrossRefGoogle Scholar
18.Mei, J.N., Li, J.S., Kou, H.C., Soubeyroux, J.L., Fu, H.Z., Zhou, L.: Formation of Ti–Zr–Ni–Cu–Be–Nb bulk metallic glasses. J. Alloys Compd. 467, 1 (2009)CrossRefGoogle Scholar
19.Mantani, Y., Takemoto, Y., Hida, M., Sakakibara, A., Tajima, M.: Phase transformation of α″ martensite structure by aging in Ti-8 mass%Mo alloy. Mater. Trans. 45, (5)1629 (2004)CrossRefGoogle Scholar
20.Ping, D.H., Yamabe-Mitarai, Y., Cui, C.Y., Yin, F.X., Choudhry, M.A.: Stress-induced α″ martensitic (110) twinning in β-Ti alloys. Appl. Phys. Lett. 9, 1519113 (2008)Google Scholar
21.Balcerzak, A.T., Sass, S.L.: The formation of the ω phase in Ti–Nb alloys. Metall. Trans. 3, 1601 (1972)CrossRefGoogle Scholar
22.Xing, H., Sun, J.: Mechanical twinning and omega transition by 〈111〉 {112} shear in a metastable β titanium alloy. Appl. Phys. Lett. 93, 031908 (2008)Google Scholar
23.Jin, O., Liu, B.X.: Non-equilibrium solid phases formed by ion mixing in the Zr–Nb system with positive heat of formation. J. Phys. Condens. Matter 6, L39 (1994)CrossRefGoogle Scholar
24.He, G., Eckert, J., Löser, W., Hagiwara, M.: Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti–Cu–Ni–Sn–Nb alloys. Acta Mater. 52, 3035 (2004)CrossRefGoogle Scholar
25.Sun, Y.F., Guan, S.K., Wei, B.C., Wang, Y.R., Shek, C.H.: Brittleness of Zr-based bulk metallic glass matrix composites containing ductile dendritic phase. Mater. Sci. Eng., A 406, 57 (2005)CrossRefGoogle Scholar