Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T04:16:43.116Z Has data issue: false hasContentIssue false

Enhancement of Electrical Properties of the Thermoelectric Compound Ca3Co4O9 through Use of Large-grained Powder

Published online by Cambridge University Press:  03 March 2011

Masashi Mikami*
Affiliation:
National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan; and Japan Science and Technology Agency, CREST, Kawaguchi, Saitama 332-0012, Japan
Emmanuel Guilmeau
Affiliation:
National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan; and Japan Science and Technology Agency, CREST, Kawaguchi, Saitama 332-0012, Japan
Ryoji Funahashi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan; and Japan Science and Technology Agency, CREST, Kawaguchi, Saitama 332-0012, Japan
Kangji Chong
Affiliation:
Osaka Electro-Communication University, Neyagawa, Osaka 572-0833, Japan
Damiel Chateigner
Affiliation:
CRISMAT-ENSICAEN Laboratory, UMR CNRS 6508, 14050 Cean Cedex, France
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hot-forged Ca3Co4O9 (Co349) ceramics were synthesized using large-grained powders prepared by a flux-growth method, and their thermoelectric properties and degree of grain alignment were evaluated. Neutron-diffraction experiments evidenced the effect of grain size on the development of the c-axis grain alignment. The optimum grain size was around 7 μm in our hot-forging method. The electrical resistivity (ρ) in the direction parallel to the pressed-plane was more reduced at higher degrees of orientation. Since ρ was reduced without lowering the Seebeck coefficient (S), the power factor (PF = S2/ρ) of the Co349 sample was improved and reached 0.8 mW/mK2 at 1073 K using Co349 grains with average size of around 7 μm. The thermal conductivity (κ) in the direction parallel to the pressed-plane slightly increased with the increase of the grain size, however the improvement of PF owing to use of large-grained powder outweighed this negative impact on the κ component of the thermoelectric figure of merit (Z = S2/ρκ).

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Terasaki, I., Sasago, Y. and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, 12685 (1997).CrossRefGoogle Scholar
2Fujita, K., Mochida, T. and Nakamura, K.: High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40, 4644 (2001).CrossRefGoogle Scholar
3Li, S., Funahashi, R., Matsubara, I., Ueno, K. and Yamada, H.: High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999).CrossRefGoogle Scholar
4Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U. and Sodeoka, S.: An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).CrossRefGoogle Scholar
5Shikano, M. and Funahashi, R.: Electrical and thermal properties of single-crystalline [Ca2CoO3]0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).CrossRefGoogle Scholar
6Masset, A.C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F. and Raveau, B.: Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62, 166 (2000).CrossRefGoogle Scholar
7Lambert, S., Leligny, H. and Grebille, D.: Three forms of the misfit layered cobaltite [Ca2CoO3][CoO2]1.62—A 4D structural investigation. J. Solid Chem. 160, 322 (2001).CrossRefGoogle Scholar
8Miyazaki, Y., Onoda, M., Oku, T., Kikuchi, M., Ishii, Y., Ono, Y., Morii, Y. and Kajitani, T.: Modulated structure of the thermoelectric compound [Ca2CoO3]0.62CoO2. J. Phys. Soc. Jpn. 71, 491 (2002).CrossRefGoogle Scholar
9Masuda, Y., Nagahama, D., Itahara, H., Tani, T., Seo, W.S. and Koumoto, K.: Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J. Mater. Chem. 13, 1094 (2003).CrossRefGoogle Scholar
10Tani, T., Itahara, H., Xia, C. and Sugiyama, J.: Topotactic synthesis of highly-textured thermoelectric cobaltites. J. Mater. Chem. 13, 1865 (2003).CrossRefGoogle Scholar
11Itahara, H., Xia, C., Sugiyama, J. and Tani, T.: Fabrication of textured thermoelectric layered cobaltites with various rock salt-type layers by using β–Co(OH)2 platelets as reactive templates. J. Mater. Chem. 14, 61 (2004).CrossRefGoogle Scholar
12Sano, M., Horii, S., Matsubara, I., Funahashi, R., Shikano, M., Shimoyama, J. and Kishio, K.: Synthesis and thermoelectric properties of magnetically c-axis-oriented [Ca2CoO3-δ]0.62CoO2 bulk with various oxygen contents. Jpn. J. Appl. Phys. 42, L198 (2003).CrossRefGoogle Scholar
13Zhou, Y., Matsubara, I., Horii, S., Takeuchi, T., Funahashi, R., Shikano, M., Shimoyama, J., Kishio, K., Shin, W., Izu, N. and Murayama, N.: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramics. J. Appl. Phys. 93, 2653 (2003).CrossRefGoogle Scholar
14Horii, S., Matsubara, I., Sano, M., Fujie, K., Suzuki, M., Funahashi, R., Shikano, M., Shin, W., Murayama, N., Shimoyama, J. and Kishio, K.: Thermoelectric performance of magnetically c-axis aligned Ca-based cobaltites. Jpn. J. Appl. Phys. 42, 7018 (2003).CrossRefGoogle Scholar
15Funahashi, R., Urata, S., Sano, T. and Kitawaki, M.: Enhancement of thermoelectric figure of merit by incorporation of large single crystals in Ca3Co4O9 bulk materials. J. Mater. Res. 18, 1646 (2003).CrossRefGoogle Scholar
16Zhou, Y., Matsubara, I., Shin, W., Izu, N. and Murayama, N.: Effect of grain size on electric resistivity and thermopower of (Ca2.6Bi0.4)Co4O9 thin films. J. Appl. Phys. 95, 625 (2004).CrossRefGoogle Scholar
17Mikami, M., Ohtsuka, S., Yoshimura, M., Mori, Y., Sasaki, T., Funahashi, R. and Shikano, M.: Effects of KCl addition on the K2CO3 flux growth of Ca3Co4O9 crystals for a thermoelectric device. Jpn. J. Appl. Phys. 42, 3549 (2003).CrossRefGoogle Scholar
18Lutterotti, L., Matthies, S. and Wenk, H.R. MAUD (Material Analysis Using Diffraction): A user friendly {Java} program for {Rietveld} texture analysis and more, in Proceedings of the 12th ICOTOM, Vol. 1, edited by Szpunar, J.A. (NRC Research Press, Ottowa, Canada, 1999), p. 1599.Google Scholar
19Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 62 (1969).CrossRefGoogle Scholar
20Matthies, S. and Vinel, G.W.: On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Phys. Status Solidi B 112, 111 (1982).CrossRefGoogle Scholar
21Guilmeau, E., Funahashi, R., Mikami, M., Chong, K. and Chateigner, D.: Thermoelectric properties-texture relationship in highly oriented Ca3Co4O9 composites. Appl. Phys. Lett. 85, 1490 (2004).CrossRefGoogle Scholar
22Grebille, D., Lambert, S., Bourée, F. and Petricek, V.: Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides. J. Appl. Crystallogr. 37, 823 (2004).CrossRefGoogle Scholar
23Guilmeau, E., Chateigner, D., Noudem, J., Funahashi, R., Horii, S. and Ouladdiaf, B.: Rietveld texture analysis of complex oxides: Examples of polyphased Bi2223 superconducting and Co349 thermoelectric textured ceramics characterization using neutron and x-ray diffraction. J. Appl. Crystallogr. 38, 199 (2005).CrossRefGoogle Scholar
24Satake, A., Tanaka, H., Ohkawa, T., Fujii, T. and Terasaki, I.: Thermal conductivity of the thermoelectric layered cobalt oxides measured by the Harman method. J. Appl. Phys. 96, 931 (2004).CrossRefGoogle Scholar
25Li, S., Funahashi, R., Matsubara, I., Ueno, K., Sodeoka, S. and Yamada, H.: Synthesis and thermoelectric properties of the new oxide materials Ca3-xBixCo4O9+δ (0.0 < x < 0.75). Chem. Mater. 12, 2424 (2000).CrossRefGoogle Scholar
26Shimoyama, J., Horii, S., Otzschi, K., Sano, M. and Kishio, K.: Oxygen nonstoichiometry in layered cobaltite Ca3Co4Oy. Jpn. J. Appl. Phys. 42 L194 (2003).CrossRefGoogle Scholar
27Terasaki, I., Tanaka, H., Satake, A., Okada, S. and Fujii, T.: Out-of-plane thermal conductivity of the layered thermoelectric oxide Bi2-xPbxSr2Co2Oy. Phys. Rev. B 70, 214106 (2004).CrossRefGoogle Scholar
28Cahill, D.G., Watson, S.K. and Pohl, R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).CrossRefGoogle Scholar