Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T11:36:02.987Z Has data issue: false hasContentIssue false

Enhancement of critical current density in YBa2Cu3Ox superconductor by mechanical deformation

Published online by Cambridge University Press:  31 January 2011

V. Selvamanickam
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77004
M. Mironova
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77004
K. Salama
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77004
Get access

Abstract

The critical current density of melt-textured YBa2Cu3Ox superconductor has been enhanced by mechanical deformation at a high temperature. Hot deformation at 45° to both the slip plane (001) and the slip directions [100]/[010] has resulted in a high density of dislocation loops and stacking faults. The deformed samples are found to exhibit a critical current density (Jc) at Hc-axis as high as that at Ha-b plane at 1.5 T and 77 K. A Jc of 35300 A/cm2 has been achieved at Hc (1.5 T and 77 K) which is twice as high as that observed in undeformed samples. The enhanced Jc in this magnetic field orientation is attributed to pinning by the defects created by mechanical deformation. This pinning mechanism is found to be effective over a wide angle between the magnetic field and the a-b plane and thus results in a marked reduction in the critical current anisotropy.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S.Tiefel, T. H.Sherwood, R. C.Davis, M. E.Dover, R. B. van, Kammlott, G. W.Fastnacht, R. A. and Keith, H. D.Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
2Salama, K.Selvamanickam, V.Gao, L. and Sun, K.Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
3Murakami, M.Morita, M.Doi, K. and Miyamoto, K.Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
4Ekin, J. W.Selvamanickam, V. and Salama, K.Appl. Phys. Lett. 59, 360 (1991).Google Scholar
5High Tc Update 5 (20), 15 (1991).Google Scholar
6Selvamanickam, V.Forster, K. and Salama, K.Physica C 178, 147 (1991).CrossRefGoogle Scholar
7Roas, B.Schultz, L. and Saemann-Ischenko, G., Phys. Rev. Lett. 64, 479 (1990).Google Scholar
8Bauhofer, W.Biberacher, W.Gegenheimer, B.Joss, W.Kremer, R.K., Mattausch, Hj.Miiller, A. and Simon, A.Phys. Rev. Lett. 63, 2520 (1989).CrossRefGoogle Scholar
9McGinn, P.Zhu, N.Chen, W.Sengupta, S. and Li, T.Physica C 176, 203 (1991).CrossRefGoogle Scholar
10Jin, S.Kammlott, G. W.Tiefel, T. H.Kodas, T. T.Ward, T. L. and Kroeger, D. M.Physica C 181, 57 (1991).CrossRefGoogle Scholar
11McGinn, P.Chen, W.Zhu, N.Tan, L.Varanasi, C. and Sengupta, S., Appl. Phys. Lett. 59, 120 (1991).CrossRefGoogle Scholar
12Lee, D.F.Chaud, X. and Salama, K.Physica C 181, 81 (1991).CrossRefGoogle Scholar
13Morita, M.Tanaka, M.Takebayashi, S.Kimura, K.Miyamoto, K. and Sawano, K.Jpn. J. Appl. Phys. 30, 813 (1991).CrossRefGoogle Scholar
14Hor, P.H.Huang, Z.J.Gao, L.Meng, R.L.Xue, Y.Y.Chu, C.W., Jean, Y. C. and Farmer, J.Mod. Phys. Lett. 4, 703 (1990).CrossRefGoogle Scholar
15Kiiper, H.Keller, C.Meier-Hirmer, R., Salama, K.Selva-manickam, V., and Tartagilla, C. P.IEEE Trans. Magn. 27, 1369 (1991).Google Scholar
16Watanabe, K.Awaji, S.Kobayashi, N.Yamane, H.Hirai, T.Muto, Y., and Yamashita, T.Proc. 3rd Int. Symp. on Supercond., Sendai, Japan (1990, in press).Google Scholar
17Lee, P. J.McKinnell, J. C. and Larbalestier, D. C.Adv. Cryo. Eng. 36, 287 (1990).Google Scholar
18Kramer, M.J.Chumbley, L.S. and McCallum, R.W.J. Mater. Sci. 25, 1978 (1990).CrossRefGoogle Scholar
19Rajan, K.German, R.M.Knorr, D.B.MacCrone, R.K.Misiolek, W., and Wright, R.N.J. Metals 41, 28 (1989).Google Scholar
20Goretta, K. C.McGuire, M. J.Brandstadter, A.Singh, J. P.Poeppel, R. B., Schultz, A. J. and Routbort, J.L.High Temperature Superconducting Compounds II, edited by Whang, S.H.DasGupta, A. and Laibowitz, R. 263 (1990).Google Scholar
21Salama, K. and Selvamanickam, V.Appl. Phys. Lett. 60, 898 (1992).CrossRefGoogle Scholar
22Selvamanickam, V. and Salama, K. in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D.Narayan, J. and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 279.Google Scholar
23Higashida, K. and Narita, N.Advances in Superconductivity III, edited by Kajimura, K. and Hayawada, H. (1991).Google Scholar
24Shi, D.Goretta, K. C.Chen, J. G. and Salem-Sugui, S. Jr., Proc. TMS Ann. Mtg., New Orleans, LA, February 18-21 (1991).Google Scholar
25Jin, S. G.Kammlott, W.Nakahara, S. T.Tiefel, H. and Graebner, J. B., Science 253, 427 (1991).CrossRefGoogle Scholar
26Mannhart, J.Anselmetti, D.Bednorz, J. G.Gerber, Ch.Muller, K. A., and Schlom, D. G. Proc. 6th Int. Workshop on Critical Currents in Supercond., Cambridge, July 8-11 (1991, in press).Google Scholar