Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T03:45:19.409Z Has data issue: false hasContentIssue false

Enhanced thermoelectric performance of compacted Bi0.5Sb1.5Te3 nanoplatelets with low thermal conductivity

Published online by Cambridge University Press:  12 July 2011

Chia-Jyi Liu*
Affiliation:
Department of Physics, National Changhua University of Education, Changhua 500, Taiwan, Republic of China
Gao-Jhih Liu
Affiliation:
Department of Physics, National Changhua University of Education, Changhua 500, Taiwan, Republic of China
Yen-Liang Liu
Affiliation:
Department of Physics, National Changhua University of Education, Changhua 500, Taiwan, Republic of China
Liang-Ru Chen
Affiliation:
Department of Physics, National Changhua University of Education, Changhua 500, Taiwan, Republic of China
Alan B. Kaiser
Affiliation:
MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report fabrication of compacted Bi0.5Sb1.5Te3 nanoplatelets using hydrothermal methods followed by cold pressing and sintering in an evacuated ampoule at various temperature of 300–380 °C. The compacted Bi0.5Sb1.5Te3 sintered at 340 °C has the highest power factor of 11.6 μW/cm·K2 and its thermal conductivity is 0.37 W/m·K at 295 K, which is very low as compared to the typical value of 1 W/m·K. The resulting dimensionless figure of merit ZT is 0.93 at 295 K.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993).CrossRefGoogle ScholarPubMed
2.Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Physica B 47, 6631 (1993).Google ScholarPubMed
3.Poudel, B., Hao, Q., Ma, Y.L., Lan, Y.C., Minnich, A., Yu, B., Yan, X., Wang, D.Z., Muto, A., Vashaee, D., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 63 (2008).CrossRefGoogle ScholarPubMed
4.Xie, W., Tang, X., Yan, Y., Zhang, Q., and Tritt, T.M.: Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 94, 102111 (2009).CrossRefGoogle Scholar
5.Zhao, X.B., Ji, X.H., Zhang, Y.H., Zhu, T.J., Tu, J.P., and Zhang, X.B.: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005).CrossRefGoogle Scholar
6.Lu, W., Ding, Y., Chen, Y., Wang, Z.L., and Fang, J.: Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J. Am. Chem. Soc. 127, 10112 (2005).CrossRefGoogle ScholarPubMed
7.Deng, Y., Cui, C.W., Zhang, N.-L., Ji, T.H., Yang, Q., and Guo, L.L.: Fabrication of bismuth telluride nanotubes via a simple solvothermal process. Solid State Commun. 138, 111 (2006).CrossRefGoogle Scholar
8.Liu, C-J., Liu, G-J., Tsao, C-W., Lu, Y-F., and Chang, L-S.: Improvement of thermoelectric power factor of hydrothermally prepared Bi0.5Sb1.5Te3 compared with its solvothermally prepared counterpart. J. Electron. Mater. 38, 1499 (2009).CrossRefGoogle Scholar
9.Lu, W., Ding, Y., Chen, Y., Wang, Z.L., and Fang, J.: Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J. Am. Chem. Soc. 127, 10112 (2005).CrossRefGoogle ScholarPubMed
10.Liu, C-J., Liu, G-J., Tsao, C-W., Lu, Y-F., and Chang, L-S.: Thermoelectric characteristics of solvothermally prepared (Bi,Sb)2Te3 mats containing nanosize of sheet-tubes, in Proceedings of 26th International Conference on Thermoelectrics, June 3–5, 2007, p. 30.Google Scholar
11.Schultz, J.M., McHugh, J.P., and Tiller, W.A.: Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 33, 2443 (1962).CrossRefGoogle Scholar
12.Zhao, D., Zhang, B-P., Liu, W.S., Zhang, H.L., and Li, J-F.: Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloy. Comp. 467, 91 (2009).CrossRefGoogle Scholar
13.Gusstafsson, S.E.: Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797 (1991).CrossRefGoogle Scholar
14.Mott, N.F. and Davis, E.A.: Electronic Process in Non-crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p. 52.Google Scholar
15.Starý, Z., Horák, J., Stordeur, M., and Stölzer, M.: Antisite defects in Sb 2−xBi xTe 3 mixed crystals. J. Phys. Chem. Solids 49, 29 (1988).CrossRefGoogle Scholar
16.Fan, X.A., Yang, J.Y., Zhu, W., Bao, S.Q., Duan, X.K., Xiao, C.J., Zhang, Q.Q., and Xie, Z.: Effect of nominal Sb2Te3 content on thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x alloy by MA-HP. J. Phys. D: Appl. Phys. 39, 5069 (2006).CrossRefGoogle Scholar
17.Hyun, D.B., Oh, T.S., Hwang, J.S., and Shim, J.D.: Effect of excess Te addition on the thermoelectric properties of the 20% Bi2Te3-80% Sb2Te3 single crystal and hot-pressed alloy. Scr. Mater. 44, 455 (2001).CrossRefGoogle Scholar
18.Liu, C-J., Wu, T-W., Hsu, L-S., Su, C-J., Wang, C-C., and Shieu, F-S.: Transport properties of spiral carbon nanofiber mats containing Pd metal clusters using Pd2(dba)3 as catalyst. Carbon 42, 2635 (2004).CrossRefGoogle Scholar
19.Jiang, J., Chen, L.D., Bai, S.Q., Yao, Q., and Wang, Q.: Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scr. Mater. 52, 347 (2005).CrossRefGoogle Scholar
20.Cui, J.L., Xu, H.F., and Liu, W.J.: Preparation and thermoelectric properties of p-type (Ga2Te3)x–(Bi0.5Sb1.5Te3)1−x (x = 0–0.2) alloys prepared by spark plasma sintering. Intermetallics 15, 1466 (2007).CrossRefGoogle Scholar
21.Yang, J., Aizawa, T., Yamamoto, A., and Ohta, T.: Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75 prepared via BMA–HP method. Mater. Chem. Phys. 70, 90 (2001).CrossRefGoogle Scholar
22.Kittel, C.: Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, New York), p. 152.Google Scholar
23.Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461 (1963).CrossRefGoogle Scholar
24.Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
25.Graebner, J.E., Reiss, M.E., and Seibles, L.: Phonon scattering in chemical-vapor-deposited diamond. Phys. Rev. B 50, 3702 (1994).CrossRefGoogle ScholarPubMed
26.Xie, W.J., He, J., Kang, H.J., Tang, X.F., Zhu, S., Laver, M., Wang, S.Y., Copley, J.R.D., Brown, C.M., Zhang, Q.J., and Tritt, T.M.: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).CrossRefGoogle ScholarPubMed
27.Hopkins, P.E., Rakich, P.T., Olsson, R.H., El-kady, I.F., and Phinney, L.M.: Origin of reduction in phonon thermal conductivity of microporous solids. Appl. Phys. Lett. 95, 161902 (2009).CrossRefGoogle Scholar