Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T20:16:11.495Z Has data issue: false hasContentIssue false

Enhanced photocatalytic activity of (Mo, C)-codoped anatase TiO2 nanoparticles for degradation of methyl orange under simulated solar irradiation

Published online by Cambridge University Press:  31 January 2011

Pengyu Dong
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
Bin Liu*
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
Yuhua Wang*
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
Huanhuan Pei
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
Shu Yin
Affiliation:
IMRAM, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

C-doped, Mo-doped, and (Mo, C)-codoped TiO2 photocatalysts were prepared by a sol-gel process. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange (MO) under simulated solar irradiation. Results indicated that both monodoped and codoped TiO2 exhibited better visible light absorption behavior and narrower energy gap than pure TiO2, and codoped TiO2 showed a slightly higher adsorption property in the dark because of higher Brunauer–Emmett–Teller-specific surface area. The photocatalytic activity of monodoped TiO2 was also enhanced, and the (0.04% Mo, C)-codoped sample had the best photocatalytic activity for degrading MO among all of the samples. The reason can be ascribed to the synergistic effect due to Mo and C doping. Furthermore, the transfer pathways of photoinduced carriers and photocatalytic reaction mechanism of (Mo, C)-codoped TiO2 was first investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tang, J., Zou, Z., Ye, J.: Effects of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatalytic behaviors of CaIn2O4. Chem. Mater. 16, 1644 (2004)CrossRefGoogle Scholar
2.Irie, H., Watanabe, Y., Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders. J. Phys. Chem. B 107, 5483 (2003)CrossRefGoogle Scholar
3.Yang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D., Klabunde, K.: Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. J. Catal. 252, 296 (2007)CrossRefGoogle Scholar
4.Ranjit, K.T., Viswanathan, B.: Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts. J. Photochem. Photobiol., A 108, 79 (1997)CrossRefGoogle Scholar
5.Huo, Y., Zhu, J., Li, J., Li, G., Li, H.: An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol-gel method followed by treatment under supercritical conditions. J. Mol. Catal. A: Chem. 278, 237 (2007)CrossRefGoogle Scholar
6.Liu, Z., Guo, B., Hong, L., Jiang, H.: Preparation and characterization of cerium oxide doped TiO2 nanoparticles. J. Phys. Chem. Solids 66, 161 (2005)CrossRefGoogle Scholar
7.Devi, L.G., Murthy, B.N.: Characterization of Mo-doped TiO2 and its enhanced photo catalytic activity under visible light. Catal. Lett. 125, 320 (2008)CrossRefGoogle Scholar
8.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
9.Sathish, M., Viswanathan, B., Viswanath, R.P., Gopinath, C.S.: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17, 6349 (2005)CrossRefGoogle Scholar
10.Sakthivel, S., Kisch, H.: Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908 (2003)CrossRefGoogle ScholarPubMed
11.Xiao, Q., Zhang, J., Xiao, C., Si, Z., Tan, X.: Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol. Energy 82, 706 (2008)CrossRefGoogle Scholar
12.Wang, X., Meng, S., Zhang, X., Wang, H., Zhong, W., Du, Q.: Multi-type carbon doping of TiO2 photocatalyst. Chem. Phys. Lett. 444, 292 (2007)CrossRefGoogle Scholar
13.Yu, C., Yu, J., Ho, W., Jiang, Z., Zhang, Z.: Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002)CrossRefGoogle Scholar
14.Umebayashi, T., Yamaki, T., Itoh, H., Asai, K.: Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 63, 1909 (2002)CrossRefGoogle Scholar
15.Ahn, K-S., Yan, Y, Shet, S., Deutsch, T., Turner, J., Al-Jassim, M.: Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Appl. Phys. Lett. 91, 231909 (2007)CrossRefGoogle Scholar
16.Gai, Y., Li, J., Li, S-S., Xia, J-B., Wei, S-H.: Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102, 036402 (2009)CrossRefGoogle ScholarPubMed
17.Tan, K., Zhang, H., Xie, C., Zheng, H., Gu, Y., Zhang, W.F.: Visible-light absorption and photocatalytic activity in molybdenum- and nitrogen-codoped TiO2. Catal. Commun. 11, 331 (2010)CrossRefGoogle Scholar
18.Bischoff, B.L., Anderson, M.A.: Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem. Mater. 7, 1772 (1995)CrossRefGoogle Scholar
19.Rengifo-Herrera, J.A., Pulgarin, C.: Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Sol. Energy 84, 37 (2010)CrossRefGoogle Scholar
20.Banerjee, S., Santhanam, A., Dhathathreyan, A., Rao, P.M.: Synthesis of ordered hexagonal mesostructured nickel oxide. Langmuir 19, 5522 (2003)CrossRefGoogle Scholar
21.Zheng, J.Y., Pang, J.B., Qiu, K.Y., Wei, Y.: Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template. J. Mater. Chem. 11, 3367 (2001)CrossRefGoogle Scholar
22.Ohno, T., Tsubota, T., Nishijima, K., Miyamoto, Z.: Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light. Chem. Lett. 33, 750 (2004)CrossRefGoogle Scholar
23.Madarász, J., Brăileanu, A., Pokol, G.: Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA-MS in air: Part 2. Precursor from thiourea and titanium(IV)-n-butoxide. J. Anal. Appl. Pyrolysis 85, 549 (2009)CrossRefGoogle Scholar
24.Gotoh, Y., Fujimura, K., Koike, M., Ohkoshi, Y., Nagura, M., Akamatsu, K., Deki, S.: Synthesis of titanium carbide from a composite of TiO2 nanoparticles/methyl cellulose by carbothermal reduction. Mater. Res. Bull. 36, 2263 (2001)CrossRefGoogle Scholar
25.Ruiz, A.M., Dezanneau, G., Arbiol, J., Cornet, A., Morante, J.R.: Insights into the structural and chemical modifications of Nb additive on TiO2 nanoparticles. Chem. Mater. 16, 862 (2004)CrossRefGoogle Scholar
26.Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X., Zou, Z.: Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal., B 69, 138 (2007)CrossRefGoogle Scholar
27.Li, Y., Hwang, D-S., Lee, N.H., Kim, S-J.: Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem. Phys. Lett. 404, 25 (2005)CrossRefGoogle Scholar
28.Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navío, J.A.: Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl. Catal., B 63, 45 (2006)CrossRefGoogle Scholar
29.Chen, C., Long, M., Zeng, H., Cai, W., Zhou, B., Zhang, J., Wu, Y., Ding, D., Wu, D.: Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. J. Mol. Catal. A: Chem. 314, 35 (2009)CrossRefGoogle Scholar
30.Yang, X., Cao, C., Erickson, L., Hohn, K., Maghirang, R., Klabunde, K.: Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J. Catal. 260, 128 (2008)CrossRefGoogle Scholar
31.Shi, Z., Ye, X., Liang, K., Gu, S., Pan, F.: XPS analysis of light elements (C, N) remaining in sol-gel derived TiO2 films. J. Mater. Sci. 22, 1255 (2003)Google Scholar
32.Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., Maier, W.F.: Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal., B 32, 215 (2001)CrossRefGoogle Scholar
33.Irie, H., Watanabe, Y., Hashimoto, K.: Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772 (2003)CrossRefGoogle Scholar
34.Di Valentin, C., Pacchioni, G., Selloni, A.: Theory of carbon doping of titanium dioxide. Chem. Mater. 17, 6656 (2005)CrossRefGoogle Scholar
35.Joung, S-K., Amemiya, T., Murabayashi, M., Itoh, K.: Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. Chemistry 12, 5526 (2006)CrossRefGoogle ScholarPubMed
36.Swartz, W., Hercules, D.M.: X-ray photoelectron spectroscopy of molybdenum compounds. Use of electron spectroscopy for chemical analysis (ESCA) in quantitative analysis. Anal. Chem. 43, 1774 (1971)CrossRefGoogle Scholar
37.Wu, C., Qin, W., Qin, G., Huang, S., Zhang, J., Zhao, D., Shaozhe, L., Liu, H.: Near-infrared-to-visible photon upconversion in Mo-doped rutile titania. Chem. Phys. Lett. 366, 205 (2002)CrossRefGoogle Scholar
38.Huang, K., Han, R-Q.: Solid Physics (Advanced Education Press, Beijing, China 1988)334 Google Scholar
39.Yang, Y., Li, X-J., Chen, J-T., Wang, L-Y.: Effect of doping mode on the photocatalytic activities of Mo/TiO2. J. Photochem. Photobiol. Chem. 163, 517 (2004)CrossRefGoogle Scholar
40.Choi, W., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
41.Wang, X.H., Li, J.G., Kamiyama, H., Moriyoshi, Y., Ishigaki, T.: Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 110, 6804 (2006)CrossRefGoogle ScholarPubMed
42.Serpone, N.: Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Photochem. Photobiol., A 104, 1 (1997)CrossRefGoogle Scholar