Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T22:27:55.176Z Has data issue: false hasContentIssue false

Enhanced N-doping efficiency and photocatalytic H2 evolution rate of InNbO4 by mechanochemical activation

Published online by Cambridge University Press:  31 January 2011

Jun Lv
Affiliation:
Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing 210093, China; Photocatalytic Materials Center (PMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen,Tsukuba, Ibaraki 305-0047, Japan; and Department of Materials Science andTechnology, Nanjing University, Nanjing 210093, China
Tetsuya Kako
Affiliation:
Photocatalytic Materials Center (PMC), National Institute for Materials Science(NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Zhigang Zou
Affiliation:
Eco-materials and Renewable Energy Research Center (ERERC), National Laboratoryof Solid State Microstructures, Nanjing 210093, China; and Department of Physics,Nanjing University, Nanjing 210093, China
Jinhua Ye*
Affiliation:
Eco-materials and Renewable Energy Research Center (ERERC), National Laboratoryof Solid State Microstructures, Nanjing 210093, China; and Photocatalytic MaterialsCenter (PMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen,Tsukuba, Ibaraki 305-0047, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, mechanochemical activation was found to be an effective method to improve nitrogen (N)-doping efficiency and the photocatalytic H2 evolution rate of InNbO4. The effects of mechanochemical treating time on phase formation, surface area, crystallite size, optical property, N-doping efficiency, and photocatalytic activity of InNbO4 were investigated experimentally. The results indicated the decreasing of crystallite size was an important factor for the improvement of N-doping efficiency and photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Osterloh, F.E.Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35 (2008)CrossRefGoogle Scholar
2.Rajeshwar, K.Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 37, 765 (2007)CrossRefGoogle Scholar
3.Hashimoto, K., Irie, H., Fujishima, A.TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys., Part 1 44, 8269 (2005)CrossRefGoogle Scholar
4.Sunstrom, J.E., Kauzlarich, S.M., Klavins, P.Synthesis, structure, and properties of lanthanum strontium titanate (La1–xSrxTiO3) (0 ≤ x ≤ 1). Chem. Mater. 4, 346 (1992)CrossRefGoogle Scholar
5.Iwase, A., Kato, H., Okutomi, H., Kudo, A.Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem. Lett. 33, 1260 (2004)CrossRefGoogle Scholar
6.Ye, J.H., Zou, Z.G., Oshikiri, M., Matsushita, A., Shimoda, M., Imai, M., Shishido, T.A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem. Phys. Lett. 356, 221 (2002)CrossRefGoogle Scholar
7.Zou, Z.G., Ye, J.H., Arakawa, H.Structural properties of InNbO4 and InTaO4: Correlation with photocatalytic and photophysical properties. Chem. Phys. Lett. 332, 271 (2000)CrossRefGoogle Scholar
8.Dai, Y., Han, S.G., Huang, B.B., Dai, D.D.Study on n-type doping with phosphorous in diamond by means of density-functional theory. Mater. Sci. Eng., B 99, 531 (2003)CrossRefGoogle Scholar
9.Hattori, A., Yamamoto, M., Tada, H., Ito, S.A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chem. Lett. 27, 707 (1998)CrossRefGoogle Scholar
10.Umebayashi, T., Yamaki, T., Tanaka, S., Asai, K.Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32, 330 (2003)CrossRefGoogle Scholar
11.Nukumizu, K., Nunoshige, J., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K.TiNxOyFz as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem. Lett. 32, 196 (2003)CrossRefGoogle Scholar
12.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
13.Chen, X.B. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008)CrossRefGoogle Scholar
14.Khan, S.U.M., Al-Shahry, M., Ingler, W.B.Efficient photochemical water splitting by a chemically modified n-TiO2 (2). Science 297, 2243 (2002)CrossRefGoogle Scholar
15.Burda, C., Lou, Y.B., Chen, X.B., Samia, A.C.S., Stout, J., Gole, J.L.Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003)CrossRefGoogle Scholar
16.Zou, Z.G., Ye, J.H., Arakawa, H.Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation. Mater. Res. Bull. 36, 1185 (2001)CrossRefGoogle Scholar
17.Witkin, D.B., Lavernia, E.J.Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51, 1 (2006)CrossRefGoogle Scholar
18.Suryanarayana, C.Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001)CrossRefGoogle Scholar
19.Yin, S., Yamaki, H., Komatsu, M., Zhang, Q.W., Wang, J.S., Tang, Q., Saito, F., Sato, T.Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J. Mater. Chem. 13, 2996 (2003)CrossRefGoogle Scholar
20.Lisoni, J.G., Millan, P., Vila, E., de Vidales, J.L.M., Hoffmann, T., Castro, A.Synthesis of ferroelectric Bi4Ti3O12 by alternative routes: Wet no-coprecipitation chemistry and mechanochemical activation. Chem. Mater. 13, 2084 (2001)CrossRefGoogle Scholar
21.Juarez, R., Sunol, J.J., Berlanga, R., Bonastre, J., Escoda, L.The effects of process control agents on mechanical alloying behavior of a Fe–Zr based alloy. J. Alloys Compd. 434, 472 (2007)CrossRefGoogle Scholar
22.Hall, W.H.X-ray line broadening in metals. Proc. Phys. Soc. London, Sect. A 62, 741 (1949)CrossRefGoogle Scholar
23.Butler, M.A.Photoelectrolysis and physical-properties of semiconducting electrode WO3. J. Appl. Phys. 48, 1914 (1977)CrossRefGoogle Scholar
24.Yan, S.C., Yan, G., Lu, Y.F., Liu, C.F., Zhou, L.Influence of raw Mg powder shape on behavior of phase formation for Mg–B system. Acta Metall. Sin. 43, 358 (2007)Google Scholar
25.Yin, S., Aita, Y., Komatsu, M., Wang, J.S., Tang, Q., Sato, T.Synthesis of excellent visible-light responsive TiO2–xNy photocatalyst by a homogeneous precipitation-solvothermal process. J. Mater. Chem. 15, 674 (2005)CrossRefGoogle Scholar
26.Yuan, J., Chen, M.X., Shi, J.W., Shangguan, W.F.Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int. J. Hydrogen Energy 31, 1326 (2006)CrossRefGoogle Scholar
27.Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002)CrossRefGoogle Scholar
28.Yang, K.S., Dai, Y., Huang, B.B., Han, S.H.Theoretical study of N-doped TiO2 rutile crystals. J. Phys. Chem. B 110, 24011 (2006)CrossRefGoogle ScholarPubMed
29.Dai, K.Y.Y., Huang, B.B.Study of the nitrogen concentration influence on n-doped TiO2 anatase from first-principles calculations. J. Phys. Chem. C 111, 12086 (2007)Google Scholar