Published online by Cambridge University Press: 31 January 2011
This is the second in a series of articles demonstrating the unique character of the aerosol-through-plasma (A-T-P) process for producing nanoparticles. This study is focused on the impact of two parameters, cation ratio (1:3, 1:1, 3:1) and solvent (evaporated prior to generation of aerosol), on the structures of Ce:Al oxides particles. These two simple changes were found to impact virtually every aspect of particle structure, including the fraction of hollow versus solid, fraction of nanoparticles, phase structure, and even the existence of surface phase segregation. CeAl mixed oxides were found only over a limited range of compositions, and that range was a function of the solvent. At all other cation ratios, only ceria was a crystalline phase, and most if not all the alumina is amorphous. It is notable that the fraction of hollow micron-sized particles and nanoparticles is greatly influenced by the cation ratio and solvent identity. Indeed, significant numbers of nanoparticles were only produced using an aqueous precursor with a Ce:Al ratio of 1:1. Another unique finding is that phase segregation exists in individual particles on the length scale of nanometers. This study compliments an earlier study of the influence of operating conditions on particle structure. Taken together, the studies suggest a means to engineer (as well as limits to the engineering possibilities) ceramic particle structures using the A-T-P method.