Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T00:32:46.276Z Has data issue: false hasContentIssue false

Engineered metal–oxide–metal heterojunction nanowires

Published online by Cambridge University Press:  03 March 2011

Jason S. Tresback
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269
Alexander L. Vasiliev
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269
Nitin P. Padture*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
*
b)Address all correspondence to this author. e-mail: [email protected]. This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.
Get access

Abstract

Using a unique combination of template-based synthesis methods involving anodization, electroplating, and selective oxidation, we have synthesized engineered metal–oxide–metal (MOM) heterojunction nanowires in the Au–SnO2–Au and Au–NiO–Au systems for possible use in nanoelectronics. The template-based synthesis method used here is generic, and it has the potential to provide control over the structure and characteristics of the resulting MOM nanowires. By virtue of their heterojunction structure, MOM nanowires have the potential to overcome some of the drawbacks associated with all-oxide nanowire building blocks, and they present a rare opportunity to measure directly fundamental functional properties of nanoscale oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hu, J., Odom, T.W. and Lieber, C.M.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).CrossRefGoogle Scholar
2Martin, B.R., Dermody, D.J., Reiss, B.D., Fang, M., Lyon, L.A., Natan, M.J. and Mallouk, T.E.: Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv. Mater. 11, 1021 (1999).3.0.CO;2-S>CrossRefGoogle Scholar
3Pan, Z.W., Dai, Z.R. and Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).CrossRefGoogle ScholarPubMed
4Baughman, R.H., Zakhidov, A.A. and de Neer, W.A.: Carbon nanotubes—The route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
5Wang, Z.L.: Nanowires and Nanobelts—Materials, Properties and Devices (Kluwer Academic Publishers, New York,2003).Google Scholar
6Lieber, C.M.: Nanoscale science and technology: Building big future from small things. MRS Bull. 28, 486 (2003).CrossRefGoogle Scholar
7Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
8Kolmakov, A. and Moskovits, M.: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Ann. Rev. Mater. Sci. 34, 151 (2004).CrossRefGoogle Scholar
9Al-Mawlawi, D., Liu, C.Z. and Moskovits, M.: Nanowires formed in anodic oxide templates. J. Mater. Res. 9, 1014 (1994).CrossRefGoogle Scholar
10Masuda, H. and Satoh, M.: Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. App. Phys. 35, L126 (1996).CrossRefGoogle Scholar
11Hulteen, J.C. and Martin, C.R.: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
12Nicewarner-Peña, S.R., Freeman, R.G., Reiss, B.D., He, L., Peña, D.J., Dalton, I.A., Cromer, R., Keating, C.D. and Natan, M.J.: Submicrometer metallic barcodes. Science 294, 137 (2001).CrossRefGoogle ScholarPubMed
13Kovtyukhova, N.I., Martin, B.R., Mbindyo, J.K.N., Smith, P.A., Razavi, B., Mayer, T.S. and Mallouk, T.E.: Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J. Phys. Chem. B 105, 8762 (2001).CrossRefGoogle Scholar
14Peña, D.J., Mbindyo, J.K.N., Carado, A.J., Mollouk, T.E., Keating, C.D., Razavi, B. and Mayer, T.S.: Template growth of photoconductive metal–CdSe–metal nanowires. J. Phys. Chem. B106 7458(2002).Google Scholar
15Mbindyo, J.K.N., Mallouk, T.E., Mattzela, J.B., Kratochvilva, I., Razavi, B., Jackson, T.N. and Mayer, T.S.: Template synthesis of metal nanowires containing monolayer molecular junctions. J. Am. Chem. Soc. 124, 4020 (2002).CrossRefGoogle ScholarPubMed
16Kolmakov, A., Zhang, Y., Cheng, G. and Moskovits, M.: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).CrossRefGoogle Scholar
17Massalski, T.B.: Binary Phase Diagrams, Vol. 1, (American Society for Metals, Metals Park, OH,1986).Google Scholar
18Nuli, Y., Zhao, S. and Qin, Q.: Nanocrystalline tin oxide and nickel oxide film anodes for Li-ion battries. J. Power Sources 114, 113 (2003).CrossRefGoogle Scholar
19Wang, J.G., Tian, M.L., Mallouk, T.E. and Chan, M.H.W.: Microstructure and interdiffusion of template-synthesized Au/Sn/Au junction nanowires. Nano Letters 4, 1313 (2004).CrossRefGoogle Scholar
20Mehrer, H.: Landolt-Bornstein numerical data and functional relationships in science and technology, Vol. 26, Diffusion in Solid Metals and Alloys (Springer-Verlag, Berlin, Germany,1990).Google Scholar
21Kanani, N.: Electroplating: Basic Principles, Processes, and Practice (Elsevier Advanced Technology, Oxford, U.K.,2005).Google Scholar
22Evoy, S.: Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron. Eng. 75, 31 (2004).CrossRefGoogle Scholar
23Hoeppener, S., Maoz, R., Cohen, S.R., Chi, L., Fuchs, H. and Sagiv, J.: Metal nanoparticles, nanowires, and contact electrodes self-assembled on patterned monolayer templates—A bottom-up chemical approach. Adv. Mater. 14, 1036 (2002).3.0.CO;2-J>CrossRefGoogle Scholar
24Mbindyo, J.K.N., Reiss, B.D., Martin, B.J., Keating, C.D., Natan, M.J. and Mollouk, T.E.: DNA-directed assembly of gold nanowires on complementary surfaces. Adv. Mater. 13, 249 (2001).3.0.CO;2-9>CrossRefGoogle Scholar
25Urban, J.J., Spanier, J.E., Ouyang, L., Yun, W.S. and Park, H.: Single-crystal barium titanate nanowires. Adv. Mater. 15, 423 (2003).CrossRefGoogle Scholar
26Li, A.P., Muller, F., Birner, A., Kielsch, N. and Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023 (1998).CrossRefGoogle Scholar
27Wu, Y., Cheng, G., Katsov, K., Sides, S.W., Wang, J., Tang, J., Fredrickson, G.H., Moskovits, M. and Stucky, G.D.: Composite mesostructures by nano-confinement. Nature Mater. 3, 816 (2004).CrossRefGoogle ScholarPubMed
28Nagarajan, V., Roytburd, A.L., Stanishevsky, A., Prasertchoung, S., Zhou, T., Chen, L., Melngailis, J., Auciello, O. and Ramesh, R.: Dynamics of ferroelastic domains in ferroelectric thin films. Nature Mater. 2, 43 (2003).CrossRefGoogle ScholarPubMed