Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T21:11:33.784Z Has data issue: false hasContentIssue false

Energy transfer in a ternary system composed of Tb(DBM)3Phen, Eu(DBM)3Phen, and poly(N-vinylcarbazole)

Published online by Cambridge University Press:  31 January 2011

Yanhua Luo
Affiliation:
Chinese Academy of Sciences, Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Key Laboratory of Optoelectronic Science and Technology, Anhui 230026, China; and School of Electrical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
Qijin Zhang*
Affiliation:
Chinese Academy of Sciences, Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Key Laboratory of Optoelectronic Science and Technology, Anhui 230026, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A ternary system composed of Tb(DBM)3Phen (TbDP), Eu(DBM)3Phen (EuDP), and poly(N-vinylcarbazole) (PVK) was prepared with good thermal stability and the photoluminescence (PL) was studied. By comparing their emissions, it was found that energy transfer exists from PVK to lanthanide complexes in the ternary system. It also was found that the lifetime of 5D0 of Eu3+ in the ternary system is longer than that of the binary system of EuDP and PVK, but the lifetime of 5D4 of Tb3+ in the ternary system is shorter than that of the binary system of TbDP and PVK, showing evidence of energy transfer from TbDP to EuDP. Temperature-dependent PL spectra of the ternary system from 9 to 300 K further showed there is a change in energy transfer efficiencies from Tb3+ ions to Eu3+ ions at different temperature ranges, which not only is more evidence of energy transfer but also can be used as a temperature detector or a thermal-sensitive probe of a optical fiber sensor.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hemmilä, I.: Time-resolved fluorometric determination of terbium in aqueous solution. Anal. Chem. 57, 1676 (1985).CrossRefGoogle Scholar
2.McGehee, M.D., Bergstedt, T., Zhang, C., Saab, A.P., O'Regan, M.B., Bazan, G.C., Srdanov, V.I., and Heeger, A.J.: Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv. Mater. 11, 1349 (1999).3.0.CO;2-W>CrossRefGoogle Scholar
3.Kobayashi, T., Kuriki, K., Imai, N., Tamura, T., Sasaki, K., Koike, Y., and Okamoto, Y.: High-power polymer optical fiber lasers and amplifiers. Proc. SPIE Int. Soc. Opt. Eng. 3623, 206 (1999).Google Scholar
4.Liang, H., Zhang, Q., Zheng, Z., Ming, H., Li, Z., Xu, J., Chen, B., and Zhao, H.: Optical amplification of Eu(DBM)3Phen-doped polymer optical fiber. Opt. Lett. 29, 477 (2004).CrossRefGoogle ScholarPubMed
5.O'Riordan, A., O'Connor, E., Moynihan, S., Llinares, X., Deun, R.V., Fias, P., Nockemann, P., Binnemans, K., and Redmond, G.: Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films. Thin Solid Films 491, 264 (2005).Google Scholar
6.Zhang, Y., Deng, Z., Liang, C., Chen, B., Xiao, J., Xu, D., and Wang, R.: Emission characteristics of PVK doped TbY(o-MBA)6 (Phen)2 Systems. J. Chin. Rare Earth Soc. 24, 163 (2006).Google Scholar
7.Iwanaga, H., Amano, A., Aiga, F., Harada, K., and Oguchi, M.: Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer. J. Alloys Compd. 408–412, 921 (2006).Google Scholar
8.Hemmilä, I.: Luminescent lanthanide chelates-a way to more sensitive diagnostic methods. J. Alloys Compd. 225, 480 (1995).CrossRefGoogle Scholar
9.Carlos, L.D., Ferreira, R.A. Sá, Rainho, J.P., and de Zea Bermudez, V.: Fine-tuning of the chromaticity of the emission color of organicinorganic hybrids co-doped with EuIII, TbIII, and TmIII. Adv. Funct. Mater. 12, 819 (2002).CrossRefGoogle Scholar
10.Liang, C., Li, W., Hong, Z., Liu, X., Peng, J., Liu, L., Lu, Z., Xie, M., Liu, Z., Yu, J., and Zhao, D.: Energy transfer process from polymer to rare earth complexes. Synth. Met. 91, 151 (1997).CrossRefGoogle Scholar
11.Sun, M., Xin, H., Wang, K.Z., Zhang, Y.A., Jin, L.P., and Huang, C.H.: Bright and monochromic red light-emitting electroluminescence devices based on a new multifunctional europium ternary complex. Chem. Commun. 702 (2003)Google Scholar
12.Zhang, Z.G., Yuan, J.B., Tang, H.J., Tang, H., Wang, L.N., and Zhang, K.L.: Nearly monochromatic red electroluminescence from a nonconjugated polymer containing carbazole segments and phenanthroline [Eu(β-diketonate)3] moieties. J. Polym. Sci., Part A: Polym. Chem. 47, 210 (2009).Google Scholar
13.Yu, G., Liu, Y., Wu, X., Zhu, D., Li, H., Jin, L., and Wang, M.: Soluble europium complexes for light-emitting diodes. Chem. Mater. 12, 2537 (2000).CrossRefGoogle Scholar
14.Kido, J., Hayase, H., Hongawa, K., Nagai, K., and Okuyama, K.: Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter. Appl. Phys. Lett. 65, 2124 (1994).CrossRefGoogle Scholar
15.Sinha, A.P.B.: Spectroscopy in Inorganic Systems (Academic, New York, 1971).Google Scholar
16.Dawson, W.R., Kropp, J.L., and Windsor, M.W.: Internal-energytransfer efficiencies in Eu3+ and Tb3+ chelates using excitation to selected ion levels. J. Chem. Phys. 45, 2410 (1966).CrossRefGoogle Scholar
17.Luo, Y., Yan, Q., Wu, S., Wu, W., and Zhang, Q.: Inter- and intramolecular energy transfer during sensitization of Eu(DBM)3Phen luminescence by Tb(DBM)3Phen in PMMA. J. Photochem. Photobiol., A 191, 91 (2007).CrossRefGoogle Scholar
18.Crosby, G.A., Whan, R.E., and Alire, R.M.: Intramolecular energy transfer in rare earth chelates. J. Chem. Phys. 34, 743 (1961).CrossRefGoogle Scholar
19.Crosby, G.A.: Luminescent organic complexes of the rare earths. Mol. Cryst. 1, 37 (1966).CrossRefGoogle Scholar
20.Li, Q., Li, T., and Wu, J.: Luminescence of europium(III) and terbium(III) complexes incorporated in poly(vinyl pyrrolidone) matrix. J. Phys. Chem. B 105, 12293 (2001).CrossRefGoogle Scholar
21.Forster, T.: 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7 (1959).Google Scholar
22.Wu, C.C., Sturm, J.C., Register, R.A., Tian, J., Dana, E.P., and Thompson, M.E.: Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities. IEEE Trans. Electron Devices 44, 1269 (1997).Google Scholar
23.Chrysochoos, J. and Evers, A.: Electronic excitation energy transfer between Tb3+ and Eu3+ in DMSO. Chem. Phys. Lett. 20, 174 (1973).CrossRefGoogle Scholar
24.Yang, Y., Su, Q., and Zhao, G.: Photoacoustic study of the cofluorescence effect of lanthanide ternary complexes in solid states. J. Mol. Struct. 525, 47 (2000).Google Scholar
25.Zhong, G., Wang, Y., Wang, C., Pu, B., Feng, Y., Yang, K., and Jin, J.: Assemblies, characterization, and luminescent enhancement of organized molecular films based on rare earth complexes. J. Lumin. 99, 213 (2002).CrossRefGoogle Scholar
26.Elbanowski, M. and Makowska, B.: The lanthanide as luminescent probes in investigations of biochemical systems. J. Photochem. Photobiol., A 99, 85 (1996).Google Scholar
27. J. Erostyák, A. Buzády, I. Hornyák, and Kozma, L.: Sensitized luminescence of the Eu3+/La3+/cinnamic acid mixed complex: Comparison to the Eu3+/Gd3+/cinnamic acid mixed complex. J. Photochem. Photobiol., A 121, 43 (1999).Google Scholar
28.Liu, Y., Qian, G., Wang, Z., and Wang, M.: Temperature-dependent luminescent properties of Eu–Tb complexes synthesized in situ in gel glass. Appl. Phys. Lett. 86, 071907 (2005).Google Scholar
29.Joshi, B.C.: Enhanced Eu3+ emission by non-radiative energy transfer from Tb3+ in zinc phosphate glass. J. Non-Cryst. Solids 180, 217 (1995).CrossRefGoogle Scholar
30.Biju, S., Raj, D.B. Ambili, Reddy, M.L.P., Jayasankar, C.K., Cowley, A.H., and Findlater, M.: Dual emission from stoichiometrically mixed lanthanide complexes of 3-phenyl-4-benzoyl-5-isoxazolonate and 2,2′-bipyridine. J. Mater. Chem. 19, 1425 (2009).Google Scholar
31.Ishizaka, T., Nozaki, R., and Kurokawa, Y.: Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence. J. Phys. Chem. Solids 63, 613 (2002).CrossRefGoogle Scholar
32. Geological Survey Mineral Resources Program: Rare Earth Oxide Prices in 2005. Available online at http://www.indexmundi.com/en/commodities/minerals/rare_earths/rare_earths_t3.html.Google Scholar
33.Melby, L.R., Rose, N.J., Abramson, E., and Caris, J.C.: Synthesis and fluorescence of some trivalent lanthanide complexes. J. Am. Chem. Soc. 86, 5117 (1964).Google Scholar
34.Erostyák, J., Buzády, A., Kaszás, A., Kozma, L., and Hornyák, I.: Time-resolved study of intramolecular energy transfer in Eu3+, Tb3+/β-diketone/o-phenanthroline complexes in aqueous micellar solutions. J. Lumin. 7274, 570 (1997).Google Scholar
35.Bevington, J.C. and Dyball, C.J.: Polymerisation of N-vinylcarbazole. Part 1.—End-group studies on polymers prepared using azobisisobutyronitrile and benzoyl peroxide. J. Chem. Soc., Faraday Trans. 1 71, 2226 (1975).CrossRefGoogle Scholar
36.Pfister, G. and Williams, D.J.: Mechanism of fluorescence quenching by acids in N-isopropyl carbazole. J. Chem. Phys. 59, 2683 (1973).CrossRefGoogle Scholar
37.Pfister, G. and Williams, D.J.: Photogeneration processes in poly (N-vinylcarbazole). J. Chem. Phys. 61, 2416 (1974).Google Scholar
38.Frey, S.T., Gong, M.L., and Horrocks, W. Dew Jr.: Synergistic coordination in ternary complexes of Eu3+ with aromatic β-diketone ligands and 1,10-phenanthroline. Inorg. Chem. 33, 3229 (1994).CrossRefGoogle Scholar
39.Sultan, R., Gadamsetti, K., and Swavey, S.: Synthesis, electrochemistry and spectroscopy of lanthanide(III) homodinuclear complexes bridged by polyazine ligands. Inorg. Chim. Acta 359, 1233 (2006).CrossRefGoogle Scholar
40.Adati, R.D., Lima, S.A.M., Davolos, M.R., and Jafelicci, M. Jr.: A new β-diketone complex with high color purity. J. Alloys Compd. 418, 222 (2006).Google Scholar
41.Brito, H.F., Malta, O.L., Souza, L.R., Menezes, J.F.S., and Carvalho, C.A.A.: Luminescence of the films of europium (III) with thenoyltrifluoroacetonate and macrocyclics. J. Non-Cryst. Solids 247, 129 (1999).CrossRefGoogle Scholar
42.Brito, H.F., Malta, O.L., and Menezes, J.F.S.: Luminescent properties of diketonates of trivalent europium with dimethyl sulfoxide. J. Alloys Compd. 303–304, 336 (2000).Google Scholar
43.Yen, W.M.: Experimental Studies of Energy Transfer in Rare Earth Ions in Crystals in Spectroscopy of Solids Containing Rare Earth Ions (North-Holland, New York, 1989).Google Scholar
44.Fujii, T., Kodaira, K., Kawauchi, S., Tanaka, N., Yamashita, H., and Anpo, M.: Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si°Al glasses prepared by the sol°gel method. J. Phys. Chem. B 101, 10631 (1997).CrossRefGoogle Scholar
45.Buddhudu, S., Morita, M., Murakami, S., and Rau, D.: Temperaturedependent luminescence and energy transfer in europium and rare earth codoped nanostructured xerogel and sol-gel silica glasses. J. Lumin. 8384, 199 (1999).Google Scholar
46.Liang, H., Chen, B., Guo, F., Guan, J., Zhang, Q., and Li, Z.: Luminescent polymer containing Eu chelates with different neutral ligands. Phys. Stat. Solids 242, 1087 (2005).CrossRefGoogle Scholar
47.Zhang, R.J., Yang, K.Z., Yu, A.C., and Zhao, X.S.: Fluorescence lifetime and energy transfer of rare earth β-diketone complexes in organized molecular films. Thin Solid Films 363, 275 (2000).CrossRefGoogle Scholar
48.Zhang, X., Sun, R., Zheng, Q., Kobayashi, T., and Li, W.: Temperature-dependent electroluminescence from (Eu, Gd) coordination complexes. Appl. Phys. Lett. 71, 2596 (1997).CrossRefGoogle Scholar
49.Katagiri, S., Hasegawa, Y., Wada, Y., Mitsuo, K., and Yanagida, S.: Temperature-dependent energy transfer in photo-sensitized luminescence of rare earth complexes. J. Alloys Compd. 408412, 809 (2006).Google Scholar
50.Dao, P. and Twarowski, A.J.: The photophysics of gas phase europium chelates. I. Temperature dependence of luminescence. J. Chem. Phys. 85, 6823 (1986).Google Scholar
51.Mitsuishi, M., Kikuchi, S., Miyashita, T., and Amao, Y.: Characterization of an ultrathin polymer optode and its application to temperature sensors based on luminescent europium complexes. J. Mater. Chem. 13, 2875 (2003).Google Scholar
52.Schnabel, W.: Polymers and Light: Fundamentals and Technical Applications (Wiley-VCH, Weinheim, 2007).Google Scholar
53.Weissman, S.I.: Intramolecular energy transfer the fluorescence of complexes of europium. J. Chem. Phys. 10, 214 (1942).Google Scholar
54.Johnson, G.E.: Emission properties of vinylcarbazole polymers. J. Chem. Phys. 62, 4697 (1975).Google Scholar
55.Berry, M.T., May, P.S., and Xu, H.: Temperature dependence of the Eu3+ 5D0 lifetime in europium tris(2,2,6,6-tetramethyl-3,5-heptanedionato). J. Phys. Chem. 100, 9216 (1996).Google Scholar
56.Liang, H., Zheng, Z., Zhang, Q., Ming, H., Chen, B., Xu, J., and Zhao, H.: Radiative properties of Eu(DBM)3Phen-doped poly (methyl methacrylate). J. Mater. Res. 18, 1895 (2003).Google Scholar