Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:33:33.442Z Has data issue: false hasContentIssue false

Energetics of ZnO nanoneedles: Surface enthalpy, stability, and growth

Published online by Cambridge University Press:  31 January 2011

Peng Zhang
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Thomas Lee
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Fen Xu
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The surface enthalpy of ZnO nanoneedles has been measured by oxide melt solution calorimetry of samples with different surface areas. Water adsorption calorimetry was carried out to characterize the stabilization effect of surface hydration. The surface enthalpies of hydrated and anhydrous surfaces (8.21 ± 0.67 and 9.81 ± 0.69 J/m2, respectively) are larger than those of nanorods. The less stable surface of nanoneedles provides a driving force for the transformation of nanoneedles into nanorods during aging. The formation of bushlike assemblies of nanoneedles is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yang, H.Y., Lau, S.P., Yu, S.F., Abiyasa, A.P., Tanemura, M., Okita, T.Hatano, H.: High-temperature random lasing in ZnO nanoneedles. Appl. Phys. Lett. 89, 011103 2006Google Scholar
2Cao, B.Q., Cai, W.Zeng, H.: Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl. Phys. Lett. 88, 161101 2006Google Scholar
3Yang, H.Y., Lau, S.P., Yu, S.F., Huang, L., Tanemura, M., Tanaka, J., Okita, T.Hng, H.H.: Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology 16, 1300 2005Google Scholar
4Zhu, Y.W., Zhang, H.Z., Sun, X.C., Feng, S.Q., Xu, J., Zhao, Q., Xiang, B., Wang, R.M.Yu, D.P.: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 2003CrossRefGoogle Scholar
5Dong, L.F., Jiao, J., Tuggle, D.W., Petty, J.M., Elliff, S.A.Coulter, M.: ZnO nanowires formed on tungsten substrates and their electron field emission properties. Appl. Phys. Lett. 82, 1096 2003CrossRefGoogle Scholar
6Tseng, Y.K., Huang, C.J., Cheng, H.M., Lin, I.N., Liu, K.S.Chen, I.C.: Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv. Funct. Mater. 13, 811 2003CrossRefGoogle Scholar
7Zhou, J., Gong, L., Deng, S.Z., Chen, J., She, J.C., Xu, N.S., Yang, R.S.Wang, Z.L.: Growth and field-emission property of tungsten oxide nanotip arrays. Appl. Phys. Lett. 87, 223108 2005Google Scholar
8Wu, X.F., Lu, G.W., Li, C.Shi, G.Q.: Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology 17, 4936 2006CrossRefGoogle Scholar
9Cao, B.Q., Cai, W.P., Duan, G.T., Li, Y., Zhao, Q.Yu, D.P.: A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field-emission properties. Nanotechnology 16, 2567 2005CrossRefGoogle Scholar
10Zhang, Z., Yuan, H., Zhou, J., Liu, D., Luo, S., Miao, Y., Gao, Y., Wang, J., Liu, L., Song, L., Xiang, Y., Zhao, X., Zhou, W.Xie, S.: Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. J. Phys. Chem. B 110, 8566 2006CrossRefGoogle ScholarPubMed
11Park, J.Y., Lee, J.M., Je, J.H.Kim, S.S.: Early stage growth behavior of ZnO nanoneedle arrays on Al2O3(0001) by metalorganic chemical vapor deposition. J. Cryst. Growth 281, 446 2005CrossRefGoogle Scholar
12Wu, X.F., Bai, H., Li, C., Lu, G.W.Shi, G.Q.: Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chem. Comm. 1655, 2006Google Scholar
13Chang, Y.C.Chen, L.J.: ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak. J. Phys. Chem. C 111, 1268 2007CrossRefGoogle Scholar
14Liu, B.Zeng, H.C.: Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 2004Google Scholar
15Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 1997Google Scholar
16McHale, J.M., Auroux, A., Perrotta, A.J.Navrotsky, A.: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788 1997Google Scholar
17Levchenko, A.A., Li, G.S., Boerio-Goates, J., Woodfield, B.F.Navrotsky, A.: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 2006Google Scholar
18Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Woodfield, B.F., Li, G.S., Boerio-Goates, J.Tissue, B.M.: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 2005CrossRefGoogle Scholar
19Mazeina, L.Navrotsky, A.: Enthalpy of water adsorption and surface enthalpy of goethite (alpha-FeOOH) and hematite (alpha-Fe2O3). Chem. Mater. 19, 825 2007CrossRefGoogle Scholar
20Zhang, P., Navrotsky, A., Guo, B., Kennedy, I., Clark, A.N., Lesher, C.Liu, Q.: Energetics of cubic and monoclinic yttrium oxide polymorphs: Phase transitions, surface enthalpies, and stability at the nanoscale. J. Phys. Chem. C 112, 932 2008Google Scholar
21 PDF No. 36-1451. McMurdie, H.F., Morris, M.C., Evans, E.H., Paretzkin, B., Wong-Ng, W., Ettlinger, L.Hubbard, C.R.: Standard x-ray diffraction patterns from the JCPDS research associateship. Powder Diffraction 1, 76 1986Google Scholar
22Zhang, P., Xu, F., Navrotsky, A., Lee, J.S., Kim, S.Liu, J.: Surface enthalpies of nanophase ZnO with different morphologies. Chem. Mater. 19, 5687 2007CrossRefGoogle Scholar
23Li, Y.B., Bando, Y.Golberg, D.: ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Appl. Phys. Lett. 84, 3603 2004Google Scholar
24Hung, C.H.Whang, W.T.: Low-temperature solution approach toward highly aligned ZnO nanotip arrays. J. Cryst. Growth 268, 242 2004CrossRefGoogle Scholar
25Navrotsky, A.: Nanoparticles and the Environment Mineralogical Society of America Washington, DC 2001 73Google Scholar
26Somorjai, G.A.: Introduction to Surface Chemistry and Catalysis John Wiley & Sons, Inc. New York 1994Google Scholar
27Tian, Z.R.R., Voigt, J.A., Liu, J., McKenzie, B.McDermott, M.J.: Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 124, 12954 2002CrossRefGoogle ScholarPubMed
28Ye, Z.Z., Huang, J.Y., Xu, W.Z., Zhou, J.Wang, Z.L.: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464 2007CrossRefGoogle Scholar
29Ushakov, S.V.Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 164103 2005Google Scholar