Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T22:56:18.074Z Has data issue: false hasContentIssue false

Energetics of oxidation of RE–Si–Al–O–N glasses

Published online by Cambridge University Press:  29 June 2016

Yahong Zhang
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Alexandra Navrotsky
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Dirk Matusch
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
Hans Jürgen Seifert
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
Get access

Abstract

Enthalpies of drop solution in molten 52 wt.% LiBO2-48 wt.% NaBO2 at 1078 K were measured for RE1.1Si1.7Al0.6O6-1.5xNx (x = 0, 0.2, 0.4, 0.6, 0.8) glasses for RE = Nd, Gd, Dy, Er, and Y. Linear relations between enthalpies of formation from elements and nitrogen content indicate that, within the experimental composition range, sites occupied by nitrogen ions are approximately equivalent in energy for a given substitutional series. The energetics of different rare-earth SiAlON glasses appears to be dominated by differences in the acid/base character of the cations. The onset glass-transition temperature increases linearly with increasing nitrogen content for the same rare earth and with decreasing rare-earth ionic radius for the same nitrogen content.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hampshire, S., in Materials Science and Technology Structure and Properties of Ceramics, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (Wiley-VCH, Weinheim, Germany, 1994), p. 19.Google Scholar
2.Hoffman, M.T. and Petzow, G., in Silicon Nitride Ceramics-Scientific and Technological Advances, edited by Chen, I-W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 3.Google Scholar
3.Rocherulle, J., Verdier, P., and Laurent, Y., Mater. Sci. Eng, B B2, 265 (1989).Google Scholar
4.Jack, K.H., in Nitrogen Ceramics, edited by Riley, F.L. (Noordoff, Leiden, The Netherlands, 1977), p. 257.Google Scholar
5.Drew, R.A.L., Hampshire, S., and Jack, K.H., in Special Ceramics, edited by Taylor, D. and Popper, P. (British Ceramic Society, Stoke-on-Trent, U.K., 1981), Vol. 7, p. 119.Google Scholar
6.Hamphire, S., Drew, R.A.L., and Jack, K.H., Commun. Am. Ceram. Soc. C-46 (1984).Google Scholar
7.Cinibulk, M.K. and Thomas, G., J. Am. Ceram. Soc. 73, 1606 (1990).Google Scholar
8.Kim, D-H. and Kim, C.H., J. Am. Ceram. Soc. 73, 1431 (1990).Google Scholar
9.Ekstrom, T. and Nygren, M., J. Am. Ceram. Soc. 75, 259 (1992).Google Scholar
10.Mandal, H., Thompson, D.P., and Ekstrom, T., Key Eng. Mater. 72-74, 187 (1992).CrossRefGoogle Scholar
11.Liang, J., Topor, L., Navrotsky, A., and Mitomo, M., J. Mater. Res. 14, 1959 (1999).Google Scholar
12.Liang, J., Navrotsky, A., Leppert, V.J., Paskowitz, M.J., Risbud, S.H., Ludwig, T., Seifert, H.J., Aldinger, F., and Mitomo, M., J. Mater. Res. 14, 4630 (1999).Google Scholar
13.Zhang, Y., Navrotsky, A., Tangeman, J., and Weber, J.K.R. (submitted for publication in J. Phys., B, Dec. 2002).Google Scholar
14.Zhang, Y. and Navrotsky, A. (submitted for publication in J. Am. Ceram. Soc., Jan. 2003).Google Scholar
15.Zhang, Y., Navrotsky, A., Tangeman, J., and Weber, J.K.R. (manuscript in preparation).Google Scholar
16.Navrotsky, A., Phys. Chem. Miner. 2, 89 (1977).Google Scholar
17.Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
18.Navrotsky, A., J. Alloys Compd. 321, 300 (2001).Google Scholar
19.Helean, K.B. and Navrotsky, A., J. Therm. Anal. Calorim. 69(3), 751 (2002).Google Scholar
20.Mraw, S.C., in Specific Heat of Solids, CINDAS Data Series on Material Properties, edited by Ho, C.Y. (Hemisphere Publishing, New York, 1988), Vol. 1-2, p. 395.Google Scholar
21.Ditmars, D.A. and Douglas, T.B., J. Res. Nat. Bur. Stand. 75A, 401 (1971).Google Scholar
22.Loehman, R.E., J. Non-Cryst. Solids 42, 433 (1980).Google Scholar
23.Cutler, I.B., Miller, P.D., Rafaniello, W., Park, H.K., Thompson, D.P., and Jack, K.H., Nature 275, 434 (1978).Google Scholar
24.Ramesh, R., Nestor, E., Pomeroy, M.J., and Hampshire, S., J. Eur. Ceram. Soc. 17, 1933 (1997).Google Scholar
25.Jin, J.S., Yoko, T., Miyaji, F., Sakka, S., Fukunaga, T., and Misawa, M., Philos. Mag. B 70, 191 (1994).Google Scholar
26.Brow, R.K. and Pantano, C.G., J. Am. Ceram. Soc. 67, C72 (1984).Google Scholar
27.Loehman, R.E., J. Am. Ceram. Soc. 62, 491 (1979).Google Scholar
28.Brinker, C.J., Haaland, D.M., and Loehman, R.E., J. Non-Cryst. Solids 56, 179 (1983).Google Scholar
29.Navarro, J.M.F., Glastech. Ber. Glass Sci. Technol. 71, 263 (1998).Google Scholar
30.Rouxel, T., Besson, J.L., Rzepka, E., and Gourset, P., J. Non-Cryst. Solids 122, 298 (1990).Google Scholar
31.Ramesh, R., Nestor, E., Pomeroy, M.J., and Hampshire, S., J. Eur. Ceram. Soc. 17, 1933 (1997).Google Scholar
32.Shelby, J.E. and Kohli, J.T., J. Am. Ceram. Soc. 73, 39 (1990).Google Scholar
33.Ohashi, M., Nakamura, K., Hirao, K., Kanzaki, S., and Hampshire, S., J. Am. Ceram. Soc. 78(1), 71 (1995).Google Scholar
34.McHale, J.M., Kowach, G.R., Navrotsky, A., and DiSalvo, F.J., Chem.-Eur. J. 2, 1514 (1996).CrossRefGoogle Scholar
35.McHale, J.M., Navrotsky, A., and DiSalvo, F.J., Chem. Mater. 11, 1148 (1999).Google Scholar
36.Tessier, F., Navrotsky, A., Sauze, A.L., and Marchand, R., Chem. Mater. 12, 148 (2000).Google Scholar
37.Navrotsky, A., Physics and Chemistry of Earth Materials (Cambridge University Press, New York, 1994).Google Scholar
38.Pearson, R.G., Science 151, 173 (1966).Google Scholar
39.Duffy, J.A. and Ingram, M.D., J. Am. Chem. Soc. 93, 6448 (1971).Google Scholar
40.Elder, S.H., DiSalvo, F.J., Topor, L., and Navrotsky, A., Chem. Mater. 5, 1545 (1993).Google Scholar
41.Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic Properties of Minerals and Related Sbstances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geol. Surv. Bull. 1452, Washington, DC, 1979).Google Scholar
42.McHale, J.M., Navrotsky, A., and DiSalvo, F.J., Chem. Mater. 11, 1148 (1999).Google Scholar
43.Sakka, S., J. Non-Cryst. Solids 181, 215 (1995).Google Scholar
44.Schneider, M., Gasparov, V.A., Richter, W., and Russel, C., J. Non-Cryst. Solids 215, 201 (1997).CrossRefGoogle Scholar
45.Kruppa, D., Dupree, R., and Lewis, M.H., Mater. Lett. 11, 195 (1991).Google Scholar
46.Unama, H., Kawamura, K., Sawaguchi, N., Maekawa, H., and Yokogawa, T., J. Am. Ceram. Soc. 76, 1308 (1993).Google Scholar