Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T04:33:52.448Z Has data issue: false hasContentIssue false

Energetics of cubic Si3N4

Published online by Cambridge University Press:  01 January 2006

Yahong Zhang
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Toshimori Sekine
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-temperature oxide melt drop solution calorimetry was used to study the energetics of formation of cubic silicon nitride prepared at high pressure. The standard enthalpy of formation of c-Si3N4 is −776.3 ± 9.5 kJ/mol. The calorimetric measurement of Si3N4 in 3Na2O·4MoO3 solvent was validated by comparing the enthalpy of formation for β–Si3N4 with previous work using alkali borate solvent. The enthalpy of transformation from β– to c-Si3N4 is 80.2 ± 9.6 kJ/mol. This value appears consistent with the observed synthesis conditions, which do not represent reversed equilibrium reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoffman, M.J. and Petzow, G. Microstructure design of Si3N4 based ceramics, in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by Chen, I.W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T.S. (Mater. Res. Soc. Symp. Proc. 287 Pittsburgh, PA, 1993) p. 3.CrossRefGoogle Scholar
2.Messier, D.R. and Croft, W.J. Silicon Nitride, in Preparation and Properties of Solid State Materials, edited by Wilcox, W.R. (Marcel Dekker, Inc., New York and Basel 7 1982) p. 131.Google Scholar
3.Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R., Fueß, H., Kroll, P. and Goehler, R.: Synthesis of cubic silicon nitride. Nature 400, 340 (1999).CrossRefGoogle Scholar
4.Deb, S.K., Dong, J., Hubert, H., McMillan, P.F. and Sankey, O.F.: The Raman spectra of the hexagonal and cubic (spinel) forms of Ge3N4: An experimental and theoretical study. Solid State Commun. 114, 137 (2000).CrossRefGoogle Scholar
5.Sekine, T., He, H., Kobayashi, T., Zhang, M. and Xu, F.: Shock-induced transformation of β–Si3N4 to a high-pressure cubic-spinel phase. App. Phys. Lett. 76, 3706 (2000).CrossRefGoogle Scholar
6.He, H., Sekine, T., Kobayashi, T. and Kimoto, K.: Phase transformation of germanium nitride (Ge3N4) under shock wave compression. J. App. Phys. 90, 4403 (2001).CrossRefGoogle Scholar
7.Mo, S.D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y. and Riedel, R.: Interesting physical properties of the new spinel phase of Si3N4 and C3N4. Phys. Rev. Lett. 83, 5046 (1999).CrossRefGoogle Scholar
8.Dong, J., Sankey, O.F., Beb, S.K., Wolf, G. and McMillan, P.F.: Theoretical study of beta–Ge3N4 and its high-pressure spinel gamma phase. Phys. Rev. B 61, 11979 (2000).CrossRefGoogle Scholar
9.Liang, J., Topor, L., Navrotsky, A. and Mitomo, M.: Silicon nitride: Enthalpy of formation of the α- and β-polymorphs and the effect of C and O impurities. J. Mater. Res. 14, 1959 (1999).CrossRefGoogle Scholar
10.Sekine, T.: Shock wave chemical synthesis. Eur. J. Solid State Inorg. Chem. 34, 823 (1997).Google Scholar
11.Sekine, T.: Shock synthesis of cubic silicon nitride. J. Am. Ceram. Soc. 85, 113 (2002).CrossRefGoogle Scholar
12.Navrotsky, A.: Thermochemical studies of nitrides and oxynitrides by oxidative oxide melt calorimetry. J. Alloys Compd. 312, 300 (2001).CrossRefGoogle Scholar
13.Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).CrossRefGoogle Scholar
14.Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
15.Ronade, M.R., Tessier, F., Navrotsky, A., Leppert, V.J., Risbud, S.H., DiSalvo, F.J. and Balkas, C.M.: Enthalpy of formation of gallium nitride. J. Phys. Chem. B. 104, 4060 (2000).CrossRefGoogle Scholar
16.Robie, R.A., Hemingway, B.S. and Fisher, J.R. In Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geol. Surv. Bull. 1452, Washington, DC 1979).Google Scholar
17.Okada, K., Fukuyama, K. and Kameshima, Y.: Characterization of surface-oxidized phase in silicon nitride and silicon oxynitride powders by x-ray photoelectron spectroscopy. J. Am. Ceram. Soc. 78, 2021 (1995).CrossRefGoogle Scholar
18.Li, Y.M., Kruger, M.B., Nguyen, J.H., Caldwell, W.A. and Jeanloz, R.: Bistable electroluminescence of tunneling silicon MOS structures. Solid State Commun. 103, 107 (1997).CrossRefGoogle Scholar
19.Swegle, J.W.: Irreversible phase transitions and wave propagation in silicate geologic materials. J. Appl. Phys. 68, 1563 (1990).CrossRefGoogle Scholar
20.Schwartz, M., Miehe, G., Zerr, A., Kroke, E., Poe, B.T., Fuess, H. and Riedel, R.: Spinel-Si3N4: Multi-anvil press synthesis and structure refinement. Adv. Mater. 12, 883 (2000).3.0.CO;2-C>CrossRefGoogle Scholar
21.Kanke, Y. and Navrotsky, A.: A calorimetric study of the lanthanide aluminum oxides and the lanthanide gallium oxides: stability of the perovskites and the garnets. J. Solid State Chem. 141, 424 (1998).CrossRefGoogle Scholar