Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:13:09.490Z Has data issue: false hasContentIssue false

Elevated temperature creep properties of NiAl eryomilled with and without Y2O3

Published online by Cambridge University Press:  03 March 2011

J. Daniel Whittenberger*
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
Michael J. Luton
Affiliation:
Exxon Research and Engineering, Annadale, New Jersey 08801
*
a)Currently at Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Stuttgart, Germany.
Get access

Abstract

The creep properties of lots of NiAl eryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol % yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar crecp strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n ≍ 10) mechanism, the low stress exponent regime n was ∼6 in tension and ∼2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of ∼600 kJ/mol for tensile testing were closer to the previously measured values (∼700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cyromilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Whittenberger, J. D., Arzt, E., and Luton, M. J., J. Mater. Res. 5, 271 (1990).CrossRefGoogle Scholar
2Whittenberger, J. D., Arzt, E., and Luton, M.J., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), pp. 211217.Google Scholar
3Whittenberger, J. D., Arzt, E., and Luton, M. J., J. Mater. Res. 5, 2819 (1990).CrossRefGoogle Scholar
4Whittenberger, J. D., Arzt, E., and Luton, M. J., Scripta Metall. et Mater. 26, 1925 (1992).CrossRefGoogle Scholar
5Whittenberger, J. D. and Luton, M. J., J. Mater. Res. 7, 2724 (1992).CrossRefGoogle Scholar
6Bieler, T. R., Noebe, R. D., Whittenberger, J. D., and Luton, M. J., in Intermetallic Matrix Composites II, edited by D.B. Miracle, Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), pp. 165170.Google Scholar
7Hebsur, M. G., Whittenberger, J. D., Dickerson, R. M., and Aikin, B. J. M., in High Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), pp. 11111116.Google Scholar
8Bieler, T. R., Whittenberger, J. D., and Luton, M. J., in High Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), pp. 11491154.Google Scholar
9Aikin, B.J. M., Whittenberger, J. D., and Hebsur, M. G., Mechanical Alloying for Structural Applications, edited by deBarbadillo, J. J., Froes, F. H., and Schwarz, R. (ASM INTERNATIONAL, Materials Park, OH, 1993), pp. 283290.Google Scholar
10Whittenberger, J. D., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V. (TMS, Warrendale, PA, 1993), pp. 819828.Google Scholar
11Luton, M. J., Jayanth, C. S., Disko, M. M., Matras, S., and Vallone, J., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L. E., Polk, D. E., Siegel, R. W., and Kear, B.H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), pp. 7986.Google Scholar
12Benlih, , Vallone, J., Klein, C. F., and Luton, M.J., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), pp. 171176.Google Scholar
13Aikin, B. J. M., Dickerson, R. M., Jayne, D. T., Farmer, S., and Whittenberger, J.D., Scripta Metall. et Mater. 30, 119122 (1994).CrossRefGoogle Scholar
14Lowell, C. E., Barrett, C. A., and Whittenberger, J. D., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), pp. 355360.Google Scholar
15Lowell, C. E. and Barrett, C. A., unpublished research, NASA Lewis Research Center, Cleveland, OH.Google Scholar
16Whittenberger, J. D., J. Mater. Sci. 22, 394 (1987).CrossRefGoogle Scholar
17Raj, S. V. and Farmer, S. F., in High Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), pp. 647652.Google Scholar
18Garg, A., Whittenberger, J. D., and Aikin, B.J.M., in Intermetallic Matrix Composites III, edited by Graves, J. A., Bowman, R. R., and Lewandowski, J. J. (Mater. Res. Soc. Symp. Proc. 350, Pittsburgh, PA), pp. 231236.Google Scholar
19Darolia, R., JOM 43(3), 44 (1991).CrossRefGoogle Scholar
20Walston, W. S., Field, R. D., Dobbs, J. R., Lahrman, D. F., and Darolia, R., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V. (TMS, Warrendale, PA, 1993), pp. 523532.Google Scholar
21Noebe, R. D., Bowman, R. R., and Nathal, M. V., Int. Mater. Rev. 38, 193 (1993).CrossRefGoogle Scholar