Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T16:10:51.211Z Has data issue: false hasContentIssue false

Electrospinning of polyvinylidene difluoride-based nanocomposite fibers

Published online by Cambridge University Press:  31 January 2011

J.S. Andrew*
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106-5050
J.J. Mack
Affiliation:
Teledyne Scientific Company, Thousand Oaks, California 91360
D.R. Clarke
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106-5050
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polyvinylidene difluoride fibers and composite fibers with Ni–Zn ferrite nanoparticles and rutile nanoparticles were prepared by electrospinning dimethyl formamide (DMF) solutions. To prevent agglomeration, the ferrite nanoparticles were coated with silica, allowing the formation of a stable ferrofluid in DMF as well as the formation of homogeneous fibers. The rutile nanoparticles could be spun with a uniform distribution within the fiber without silica coating. The effects of various solution properties (viscosity and solids loading for composite fibers) and processing parameters (flow rate and voltage) on fiber morphology and diameter were studied to identify a processing window that resulted in the formation of smooth, defect-free fibers. Of the variables examined, fiber diameter was found to be the most strongly dependent on the viscosity of the electrospinning solution. Infrared spectroscopy revealed that the inclusion of well-dispersed nanoparticles in the electrospun fibers enhanced the presence of the ferroelectric phase in the composite fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 2000CrossRefGoogle Scholar
2van Suchtelen, J.: Product composites: A new application of composite materials. Philips Res. Reports 27, 28 1972Google Scholar
3Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Y.I.Laletin, V.M.: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 2001CrossRefGoogle Scholar
4Ryu, J., Carazo, A.V., Uchino, K.Kim, H-E.: Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceram. 7, 17 2001CrossRefGoogle Scholar
5Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A.Ramesh, R.: Mutiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 2004CrossRefGoogle Scholar
6Chiang, Y-M., Burnie, D. IIIKingery, W.D.: Physical Ceramics: Principles for Ceramic Science and Engineering John Wiley & Sons, Inc. New York 1997 472Google Scholar
7Néel, L.: Thermoremnant magnetization of fine powders. Rev. Mod. Phys. 25, 293 1953CrossRefGoogle Scholar
8Lovinger, A.J.: Ferroelectric polymers. Science 220, 1115 1983CrossRefGoogle ScholarPubMed
9Nalwa, H.S.: Ferroelectric Polymers: Chemistry, Physics and Applications Marcel Dekker, Inc. New York 1995 63–181CrossRefGoogle Scholar
10Ren, X.Dzenis, Y.: Novel continuous poly(vinylidene fluoride) nanofibers in Smart Nanotextiles, edited by X. Tao, G. Tröster, and D. Diamond (Mater. Res. Soc. Symp. Proc. 920, Warrendale, PA, 2006), 55–61CrossRefGoogle Scholar
11Koombhongse, S., Liu, W.Reneker, D.H.: Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci., Part B: Polym. Phys. 39, 2598 2001CrossRefGoogle Scholar
12Zhao, Z., Li, J., Yuan, X., Li, X., Zhang, Y.Sheng, J.: Preparation and properties of electrospun poly(vinylidene fluoride). Membranes J. Appl. Polym. Sci. 97, 466 2005CrossRefGoogle Scholar
13Li, D.Xia, Y.: Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 16, 1151 2004CrossRefGoogle Scholar
14Wang, M., Singh, H., Hatton, T.A.Rutledge, G.C.: Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45, 5505 2004CrossRefGoogle Scholar
15Sigmund, W., Yuh, J., Maneeratana, V., Pyrgiotakis, G., Daga, A., Taylor, J.Nino, J.C.: Processing and structure relationships in electrospinning of ceramic fiber systems. J. Am. Ceram. Soc. 89, 395 2006CrossRefGoogle Scholar
16Tourinho, F.A., Franck, R.Massart, R.: Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 25, 3249 1990CrossRefGoogle Scholar
17Philipse, A.P., van Bruggen, M.P.B.Pathmamanoharan, C.: Magnetic silica dispersions: Preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10, 92 1994CrossRefGoogle Scholar
18Naughton, B.T., Majewski, P.Clarke, D.R.: Magnetic properties of nickel-zinc ferrite torroids prepared from nanoparticles. J. Am. Ceram. Soc. 90, 3547 2007CrossRefGoogle Scholar
19Cullity, B.D.Stock, S.R.Elements of X-Ray Diffraction 3rd ed.Prentice Hall Upper Saddle River, NJ 2001 170Google Scholar
20Hohman, M.M., Shin, M., Rutledge, G.Brenner, M.P.: Electrospinning and electrically forced jets: I. Stability theory. Phys. Fluids 13, 2201 2001CrossRefGoogle Scholar
21Hohman, M.M., Shin, M., Rutledge, G.Brenner, M.P.: Electrospinning and electrically forced jets: II. Applications. Phys. Fluids 13, 2221 2001CrossRefGoogle Scholar
22Reneker, D.H., Yarin, A.L., Fong, H.Koombhongse, S.: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531 2000CrossRefGoogle Scholar
23Salimi, A.Yousefi, A.A.: Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci., Part B: Polym. Phys. 42, 3487 2004CrossRefGoogle Scholar
24Mouallem-Bahout, M., Bertrand, S.Peña, O.: Synthesis and characterization of Zn1–xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178, 1080 2005CrossRefGoogle Scholar
25Ocaña, M., Fornés, V., García Ramos, J.V.Serna, C.J.: Factors affecting the infrared and Raman spectra of rutile powders. J. Solid State Chem. 75, 364 1988CrossRefGoogle Scholar
26Busca, G., Ramis, G., Amores, J.M. Gallardo, Escribano, V.S.Piaggio, P.: FT Raman and FTIR studies of titanias and metatitanate powders. J. Chem. Soc., Faraday Trans. 90, 3181 1994CrossRefGoogle Scholar