Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T01:42:38.219Z Has data issue: false hasContentIssue false

Electronic structure of high pressure phase of AlN

Published online by Cambridge University Press:  31 January 2011

Ravindra Pandey
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931-1295
Amin Sutjianto
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931-1295
Max Seel
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931-1295
John E. Jaffe
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931-1295
Get access

Abstract

Results of ab initio Hartree–Fock calculations for the electronic structure of aluminum nitride in the (high-pressure) rocksalt phase are reported. In the rocksalt phase, the calculated lattice constant is 3.982 Å with the bulk modulus of 329 GPa. The band structure is predicted to be indirect at the X point with a gap of 8.9 eV. In this phase, the bonding is shown to be essentially ionic between Al and N. The direct gap shows a stronger linear dependence on pressure with a pressure derivative of 68 meV/GPa compared to that of the indirect gap with a pressure derivative of 31.7 meV/GPa.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990).Google Scholar
2Davis, R.F., Sitar, Z., Williams, B.E., Kong, H.S., Kim, H.J., Palmour, J.W., Edmond, J. A., Ryu, J., Glass, J. T., and Carter, C. H. Jr., Mater. Sci. Eng. B 1, 77 (1988).CrossRefGoogle Scholar
3Loughin, S., French, R. H., Slack, G. A., and Blum, J. B., in Covalent Ceramics, edited by Fischman, G. S., Spriggs, R. M., and Aselage, T. L. (Mater. Res. Soc. Symp. Proc. EA–23, Pittsburgh, PA, 1990), and references cited therein.Google Scholar
4Ching, W. and Harmon, B., Phys. Rev. B 34, 5305 (1986).CrossRefGoogle Scholar
5Gorczyca, I., Christensen, N. E., Perlin, P., Grzegory, I., Jun, J., and Bockowski, M., Solid State Commun. 79, 1033 (1991).CrossRefGoogle Scholar
6Vollstadt, H., Ito, E., Akishi, M., Akimoto, S., and Fukunaga, O., Proc. Jpn. Acad. B 66, 7 (1990).Google Scholar
7Ueno, M., Onodera, A., Shimomura, O., and Takemura, K., Phys. Rev. B 45, 10123 (1992).CrossRefGoogle Scholar
8For details, see Orlando, R., Dovesi, R., Roetti, C., and Saunders, V. R., J. Phys.: Condens. Matter 2, 7769 (1990).Google Scholar
9Pisani, C., Dovesi, R., and Roetti, C., Hartree-Fock ab initio Treatment of Crystalline Systems, Lecture Notes in Chemistry 48 (Springer, Heidelberg, 1988); R. Dovesi, C. Pisani, C. Roetti, M. Causa, and V. R. Saunders, QCPE 577 (1989).CrossRefGoogle Scholar
10Jaffe, J. E., Pandey, R., and Kunz, A. B., J. Phys. Chem. Solids 52, 755 (1991), and references cited therein.CrossRefGoogle Scholar
11Pantelides, S.T., Mickish, D. J., and Kunz, A.B., Phys. Rev. B 10, 2602 (1974).CrossRefGoogle Scholar
12Gaussian Basis Sets for Molecular Calculations, edited by Huzinaga, S. (Elsevier, New York, 1984).Google Scholar
13Camp, P.E. Van, Doren, V.E. Van, and Devreese, J.T., Phys. Rev. B 44, 9056 (1991).CrossRefGoogle Scholar
14Vinet, P., Ferrante, J., Smith, J. R., and Rose, J. H., J. Phys. C 19, L467 (1986).Google Scholar
15Perry, B. and Rutz, R., Appl. Phys. Lett. 33, 319 (1978).CrossRefGoogle Scholar
16Lambrecht, W. R. L. and Segal, B., Phys. Rev. B 43, 7070 (1991).CrossRefGoogle Scholar