Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T13:02:53.210Z Has data issue: false hasContentIssue false

Electronic structure and total energy of diamond/BeO interfaces

Published online by Cambridge University Press:  31 January 2011

Walter R.L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079
Benjamin Segall
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079
Get access

Abstract

Electronic structure calculations are used to study the bonding at diamond/BeO interfaces. The {110} interface between zinc blende BeO and diamond is used as a representative model for general reconstructed interfaces characterized by an equal amount of Be–C and O–C bonds. The interface energy is calculated to be 2 J/m2 and combined with the estimated free surface energies to obtain an estimate of the adhesion energy. It is found to be close to the adhesion of BeO to itself, but somewhat lower than that of diamond to itself. The effects of the 7% lattice mismatch on the total energy and the band structure for a biaxially strained pseudomorphic diamond film are investigated. The effect of misfit dislocations, expected to occur for thicker films, on the adhesion energy is estimated to be lower than 10%. The bulk properties, such as equilibrium lattice constant, bulk modulus, cohesive energy, and band gap of BeO are shown to be in good agreement with experimental values and previous calculations. The valence-band offset is calculated to be 3.9 eV and found to take up most of the large band gap discontinuity. The nature of the bonding is discussed in terms of the local densities of states near the interface. The interface localized features are identified in terms of Be–C and O–C bonding and antibonding states.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Koizumi, S., Murakami, T., Inuzuka, T., and Suzuki, K., Appl. Phys. Lett. 57, 563 (1990).CrossRefGoogle Scholar
2.Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 40, 9909 (1989); ibid. 41, 5409 (1990).Google Scholar
3.Wentzcovitch, R. M., Continenza, A., and Freeman, A. J., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 611.Google Scholar
4.Martin, R. M., J. Vac. Sci. Technol. 17, 178 (1980).Google Scholar
5.Harrison, W.A., Kraut, E.A., Waldrop, J. R., and Grant, R.W., Phys. Rev. B 18, 4402 (1978).CrossRefGoogle Scholar
6.Lambrecht, W.R.L., Lee, C.H., Methfessel, M., van Schilfgaarde, M., Amador, C., and Segall, B., in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E., and Liliental-Weber, Z. (Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, PA, 1991), p. 667.Google Scholar
7.Chang, K.J. and Cohen, M.L., Solid State Commun. 50, 487 (1984).CrossRefGoogle Scholar
8.Matthew, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
9.People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).CrossRefGoogle Scholar
10.Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 1325 (1987).Google Scholar
11.Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
12.von Barth, U. and Hedin, L., J. Phys. C 5, 1629 (1972).Google Scholar
13.Andersen, O. K., Phys. Rev. B 12, 3060 (1975).Google Scholar
14.Glötzel, D., Segall, B., and Andersen, O. K., Solid State Commun. 36, 403 (1980).Google Scholar
15.Bachelet, G.B. and Christensen, N.E., Phys. Rev. B 31, 879 (1985).Google Scholar
16.Christensen, N. E., Solid State Commun. 68, 959 (1988).Google Scholar
17.Lambrecht, W.R.L. and Segall, B., Phys. Rev. B 43, 7070 (1991).Google Scholar
18.Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar
19.Bechstedt, F. and Sole, R. Del, Phys. Rev. B 38, 7710 (1988).CrossRefGoogle Scholar
20.Roessler, D. M., Walker, W. C., and Loh, E., J. Phys. Chem. Solids 30, 157 (1969).Google Scholar
21.Gründler, R., Breuer, K., and Tews, W., Phys. Status Solidi B 86, 329 (1978).CrossRefGoogle Scholar
22.Fomichev, V.A., Fiz. Tverd. Tela (Leningrad) 13, 907 (1971) [Sov. Phys. Solid State 13, 754 (1971)]Google Scholar
23.Chang, K.J., Froyen, S., and Cohen, M.L., J. Phys. C 16, 3475 (1983).Google Scholar
24.Brantley, W.A., J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
25.Wood, D. M. and Zunger, A., Phys. Rev. B 40, 4062 (1989).Google Scholar
26.Lambrecht, W. R. L., Segall, B., and Andersen, O. K., Phys. Rev. B 41, 2813 (1990).Google Scholar
27.Pollak, F.H. and Cardona, M., Phys. Rev. 172, 816 (1968).CrossRefGoogle Scholar
28.Kleinman, L., Phys. Rev. 128, 2614 (1962).Google Scholar
29.Cardona, M. and Christensen, N. E., Solid State Commun. 58, 421 (1986).CrossRefGoogle Scholar
30.Brey, L., Christensen, N.E., and Cardona, M., Phys. Rev. B 36, 638 (1988).Google Scholar
31.Nielsen, O.H., Phys. Rev. B 34, 5808 (1986).Google Scholar
32.Harrison, W.A., Electronic Structure and the Properties of Solids (Dover, New York, 1989).Google Scholar
33.Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).Google Scholar