Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T15:22:04.616Z Has data issue: false hasContentIssue false

Electronic bonding characteristics of hydrogen in bcc iron: Part I. Interstitials

Published online by Cambridge University Press:  31 January 2011

Yoshio Itsumi
Affiliation:
Material Research Laboratory, Kobe Steel, Ltd.
D. E. Ellis
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Electronic structure calculations were carried out for bcc iron (Fe) clusters with or without hydrogen (H), and also involving a vacancy, using the self-consistent Discrete Variational method (DV-Xα) within the local density functional formalism. Bonding characteristics investigated show the following: (i) Interstitial H notably decreases interatomic Fe–Fe bond strengths, but acts over a small distance (within 0.3 nm). (ii) In the perfect Fe lattice field, interstitial H feels a repulsive force at any site. As a result of lattice relaxation, volume expansion may be expected. (iii) H in combination with a vacancy prefers a position shifted from the octahedral site toward the vacancy. This is fairly consistent with an experimental result.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hirth, P., Metall. Trans. A 11A, 861 (1980).CrossRefGoogle Scholar
2.Albrecht, J., Thompson, A. W., and Bernstein, I.M., Metall. Trans. A 10A, 1759 (1979).Google Scholar
3.Liu, C. T., Fu, C. L., George, E. P., and Painter, G. S., ISIJ Int. 31, 1192 (1991).CrossRefGoogle Scholar
4.Messemer, R. P. and Briant, C. L., Acta Metall. 30, 457 (1982).CrossRefGoogle Scholar
5.Papaconstantopoulos, D. A., Klein, B. M., Economou, E. N., and Boyer, L. L., Phys. Rev. B 17, 141 (1978).CrossRefGoogle Scholar
6.Terakura, K., Bull. Jpn. Inst. Metals 20, 477 (1981).CrossRefGoogle Scholar
7.Krasko, G. L. and Olson, G. B., Solid State Commun. 76, 247 (1990).Google Scholar
8.Adachi, H. and Imoto, S., J. Phys. Soc. Jpn. 46, 1194 (1979).CrossRefGoogle Scholar
9.Krasko, G. L. and Olson, G. B., Solid State Commun. 79, 113 (1991).Google Scholar
10.Rosen, A., Ellis, D. E., Adachi, H., and Averill, F. W., J. Chem. Phys. 85, 3629 (1976).CrossRefGoogle Scholar
11.von Barth, U. and Hedin, L., J. Phys. C 5, 1629 (1972).CrossRefGoogle Scholar
12.Vosko, S. H., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
13.Benesh, G. A. and Ellis, D. E., Phys. Rev. B 24, 1603 (1981).CrossRefGoogle Scholar
14.Losch, W., Acta Metall. 27, 1885 (1979).CrossRefGoogle Scholar
15.Fukai, Y., Bull. Jpn. Inst. Metals 25, 633 (1986); Y. Fukai, Bull. Jpn. Inst. Metals 25, 931 (1986). Note: The information cited here is derived from the review of metal-H systems (in Japanese). The experimental data on Fe–H discussed originated from the unpublished work of A. Narita, by private communication. Y. Fukai, The Metal-Hydrogen System (Springer-Verlag, Berlin, 1993).CrossRefGoogle Scholar
16.Sugimoto, H., J. Phys. Soc. Jpn. 53, 2592 (1984).CrossRefGoogle Scholar
17.Delley, B. and Ellis, D.E., Phys. Rev. B 26, 636 (1982); B. Lindgren and D. E. Ellis, Hyperfine Interact. 17–19, 279 (1984); C-X. Guo and D. E. Ellis, Phys. Rev. B 31, 5006 (1985).Google Scholar
18.Myers, S. M., Picraux, S. T., and Stoltz, R. E., J. Appl. Phys. 50, 5710 (1979).CrossRefGoogle Scholar
19.Versluis, L. and Ziegler, T., J. Chem. Phys. 88, 322 (1988).Google Scholar
20.Fan, L. and Zeigler, T., in Density Functional Theory of Molecules, Clusters and Solids, edited by Ellis, D. E. (Kluwer, Dordrecht, The Netherlands, 1995), p. 67.Google Scholar