Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:17:27.098Z Has data issue: false hasContentIssue false

Electron-beam-stimulated processes at CdS surfaces observed by real-time atomic-resolution electron microscopy

Published online by Cambridge University Press:  31 January 2011

David J. Smith
Affiliation:
Center for Solid State Science and Department of Physics, Arizona State University, Tempe, Arizona 85287
Daniel J. Ehrlich
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
Get access

Abstract

Electron-beam-induced changes in the structure of partially amorphous CdS surfaces have been observed directly by atomic-resolution electron microscopy. A sequence of atomic rearrangements leading to nucleation and growth of cubic CdS and hexagonal Cd has been documented. Inelastic electron collisions lead to crystallization of overlying amorphous CdS material whereas electron-stimulated desorption of S from the underlying CdS crystal results in precipitation of Cd crystallites at the crystalline/amorphous interface. From 100 to 500 keV the events are almost energy-independent.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hobbs, L. W., Quantitative Electron Microscopy, edited by Chapman, J. N. and Craven, A. J. (Scottish Universities Summer Schools in Physics, Edinburgh, 1984), pp. 399444.Google Scholar
2Holmstrom, R. P., Laghowski, J., and Gatos, H.C., Surface Sci. 100, L467 (1980).CrossRefGoogle Scholar
3Brewster, J. L., Appl. Phys. Lett. 13, 385 (1968).CrossRefGoogle Scholar
4Basov, N.G., Bogdankevich, O.V., and Devyatov, A. V., Sov. Phys.— JETP 47, 1588 (1964).Google Scholar
5Ehrlichand, D. J.Smith, D. J., Appl. Phys. Lett. 48, 1751 (1986).Google Scholar
6Hurwitz, C. E., Appl. Phys. Lett. 8, 121 (1966).Google Scholar
7Kovalenko, V. A., Kryukova, I. V., and I'rokofwa, S. P., Sov. J. Quantum Electron. 11, 1079 (1981).Google Scholar
8Smith, D. J., Sinclair, R., Yamashita, T., and Ponce, F. A., in Seventh International Conference riigh Voltage Electron Microscopy, edited by Fisher, R. .M., Westmacott, K., and Gronsky, R. (Lawrence Berkeley Laboratory, Lawrence, CA, 1983), p. 31.Google Scholar
9Smith, D. J., Camps, R. A., Freeman, L. A., Hill, R., Nixon, W. C., and Smith, K. C. A., J. Microscopy 130, 129 (1983).CrossRefGoogle Scholar
10Kulp, B. A., Phys. Rev. 125, 1865 (1962).CrossRefGoogle Scholar
11Cherns, D., Finnis, M. W., and Matthews, M. D., Philos. Mag. 35, 693 (1977).Google Scholar
12Smith, D. J. and Marks, L. D., Ultramicroscopy 16, 101 (1985).Google Scholar
13Arnone, C., Rothschild, M., and Ehrlich, D. J., Appl. Phys. Lett. 48, 736 (1986).Google Scholar
14Petford-Long, A. K. and Smith, D. J. (unpublished results).Google Scholar
15Drinkwine, M. J. and Lichrman, D., Progr. Surf. Sci. 8, 123 (1977).Google Scholar
16Smith, D. J. and Bursill, L. A., Ultramicroscopy 17, 382 (1985).Google Scholar
17For a recent review, sec Itoh, N. and Nakayama, T., Semiconductors lnsulators 5, 383 (1983).Google Scholar