Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T12:48:05.773Z Has data issue: false hasContentIssue false

Electron-beam-induced structural changes in crystalline C60 and C70

Published online by Cambridge University Press:  31 January 2011

Supapan Seraphin
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Dan Zhou
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Jun Jiao
Affiliation:
Department of Physics, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

High-resolution transmission electron microscopy (HRTEM), electron diffraction, and electron energy-loss spectroscopy (EELS) were used to characterize electron-beam-induced structural transformations in crystalline samples of C60 and C70. During these transformations, the electron-diffraction patterns became progressively more diffuse, with the outer diffraction spots disappearing first, followed in succession by the disappearance of the inner spots. We interpret this course of evolution in the diffraction patterns as evidence of degradation of the crystalline structure via the destruction of individual molecules, as opposed to electron-beam-induced motion of intact fullerene molecules. EELS analyses of the data indicate that the final state of these transformations was amorphous carbon.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kratschmer, W., Lamb, L., Fostiropoulos, K., and Huffman, D., Nature 347, 354 (1990).CrossRefGoogle Scholar
2Kroto, H.W., Heath, J., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318, 162 (1985).CrossRefGoogle Scholar
3Wakabayashi, T. and Achiba, Y., Chem. Phys. Lett. 190, 465 (1992).CrossRefGoogle Scholar
4Wang, S. and Buseck, P. R., Chem. Phys. Lett. 182, 1 (1991).Google Scholar
5Dravid, V.P., Liu, S., and Kappes, M.K., Chem. Phys. Lett. 185, 75 (1991).CrossRefGoogle Scholar
6Hansen, P. L., Fallon, P. J., and Kratschmer, W., Chem. Phys. Lett. 181, 367 (1991).CrossRefGoogle Scholar
7Ugarte, D., Nature 359, 707 (1992).CrossRefGoogle Scholar
8Chatterjee, K., Parker, D. H., Wurz, P., Lykke, K. R., Gruen, D. M., and Stock, L.M., J. Org. Chem. 57, 3253 (1992).CrossRefGoogle Scholar
9Khemani, K. C., Prato, M., and Wudl, F., J. Org. Chem. 57, 3254 (1992).CrossRefGoogle Scholar
10Fleming, R. M., Siegrist, T., Marsh, P., Hessen, B., Kortan, A. R., Murphy, D.W., Haddon, R.C., Tycko, R., Dabbagh, G., Mujsce, A.M., Kaplan, M. L., and Zahurak, S. M., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991).Google Scholar
11Edington, J. W., Practical Electron Microscopy in Materials Science (Tech Books, 1976) pp. 91103.Google Scholar
12Saito, Y., Shinohara, H., and Oshita, A., Jpn. J. Appl. Phys. 30, L1145 (1991).Google Scholar
13Sohmen, E., Fink, J., and Kratschmer, W., Z. Phys. B-Condensed Matter 86, 87 (1992).CrossRefGoogle Scholar
14Egerton, R. F., Electron Energy-Loss Spectroscopy (Plenum Press, New York, 1986), pp. 58.Google Scholar
15Saito, Y., Suzuki, N., Shinohara, H., and Ando, Y., Jpn. J. Appl. Phys. 30, 2857 (1991).Google Scholar
16Hobbs, L. W., in Introduction to Analytical Electron Microscopy, edited by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum Press, New York, 1979), pp. 437480.CrossRefGoogle Scholar