Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T00:39:40.109Z Has data issue: false hasContentIssue false

Electron microscopy and krypton adsorption characterization of high-purity MgO powder

Published online by Cambridge University Press:  03 March 2011

M. Bretz
Affiliation:
Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109
A. G. Shastri
Affiliation:
Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 48109
J. Schwank
Affiliation:
Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 48109
Get access

Abstract

A promising method for the preparation of sizeable quantities of structurally well-defined, highpurity MgO powder is reported. The morphology and surface uniformity of the powder is comparable to that of MgO smokes but with narrow size distribution of particles. Sample characterization of these oxide powders is accomplished by combining structural TEM/STEM examination with krypton gas adsorption isotherms. The latter technique is sensitive to the presence of surface hydroxyl groups and of surface roughness on an atomic scale. Highresolution TEM indicates a perfect cubic morphology, intra-crystallite orientation, and dendritic sintering of cubes. In the STEM mode sharp convergent beam electron diffraction patterns are obtained, and in thick specimen regions Kikuchi lines appear, indicating the absence of crystal defects. After prolonged outgassing to remove surface hydroxyl groups, a krypton adsorption isotherm contains a near vertical submonolayer riser and second layer step along with partial wetting features near saturation. These near-ideal dendritic ceramic powders, therefore, provide a research bridge between single crystal surface studies and large-scale powder technology.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shastri, A. G., Chae, H. B., Bretz, M., and Schwank, J., J. Phys. Chem. 89, 3761 (1985).Google Scholar
2Jones, C. F., Reeve, R. A., Rigg, R., Segall, R. L., Smart, R. St. C., and Turner, P. S., J. Chem. Soc, Faraday Trans. I 80, 2609 (1984).CrossRefGoogle Scholar
3Dash, J. G., Ecke, R., Stoltenberg, J., Vilches, O. E., and Whittemore, O. J. Jr., J. Phys. Chem. 82, 1450 (1978).CrossRefGoogle Scholar
4Coulomb, J. P. and Vilches, O. E., J. Phys. (Paris) 45, 1381 (1984).CrossRefGoogle Scholar
5Coulomb, J. P., Sullivan, T. S., and Vilches, O. E., Phys. Rev. B 30, 4753 (1984).CrossRefGoogle Scholar
6Morishige, K., Kittaka, S., and Morimoto, T., J. Colloid Interface Sci. 89, 86 (1982).CrossRefGoogle Scholar
7Segall, R. L., Smart, R. St. C., and Turner, P. S., J. Chem. Soc., Faraday Trans. I 73, 1710 (1977).Google Scholar
8Jones, C. F., Segall, R. L., Smart, R. St. C., and Turner, P. S., Proc. R. Soc. London, Ser. A 374, 141 (1981).Google Scholar
9Coluccia, S., Tench, A. J., and Segall, R. L., J. Chem. Soc, Faraday Trans. I 77, 2203 (1981).CrossRefGoogle Scholar
10Moodie, A. F. and Warble, C. E., J. Cryst. Growth 10, 26 (1971).CrossRefGoogle Scholar
11Hibi, T. and Ogawa, T., J. Phys. Soc. Jpn. 9, 627 (1954).CrossRefGoogle Scholar
12Hibi, T., Kambe, K., and Houjo, G., J. Phys. Soc. Jpn. 10, 35 (1955).CrossRefGoogle Scholar
13Coluccia, S., Tench, A. J., and Segall, R. L., J. Chem. Soc, Faraday Trans. I 75, 1769 (1979).Google Scholar
14Jones, C. F., Segall, R. F., Smart, R. St. C., and Turner, P. S., Philos. Mag. A 42, 267 (1980).Google Scholar
15Hayashi, S., Nakamori, M., Hirono, J., and Kanamori, H., J. Phys. Soc. Jpn. 43, 2006 (1977).CrossRefGoogle Scholar
16Leofanti, G., Solari, M., Tauszik, G. R., Garbassi, F., Galvagno, S., and Schwank, J., Appl. Catalysis 3, 131 (1982).CrossRefGoogle Scholar
17Gordon, R. S. and Kingery, W. D., J. Am. Ceram. Soc 49, 654 (1966).CrossRefGoogle Scholar
18Goodman, J. F., Proc. R. Soc. London, Ser. A 247, 346 (1958).Google Scholar
19Guilliat, I. F. and Brett, N. H., Philos. Mag. 23, 647 (1971).Google Scholar
20Anderson, P. J. and Horlock, R. F., Trans. Faraday Soc. 58, 1993 (1962).CrossRefGoogle Scholar
21Boudart, M., Delbouille, A., Derouane, E. G., Indovina, V., and Walters, A. B., J. Am. Chem. Soc. 94, 6622 (1972).Google Scholar
22Rhodes, W. and Wuensch, B. J., J. Am. Ceram. Soc 56, 495 (1973).Google Scholar
23Freund, F., Martens, A., and Scheikh-ol-Eslami, N., J. Therm. Anal. 8, 525 (1975).CrossRefGoogle Scholar
24Freund, F. and Sperling, V., Mater. Res. Bull. 11, 621 (1976).Google Scholar
25Phillips, V. A., Opperhauser, H., and Kolbe, J. L., J. Am. Ceram. Soc. 61, 75 (1978).CrossRefGoogle Scholar
26Garn, P. D., Kawalek, B., and Chang, J., Thermochim. Acta 26, 375 (1978).CrossRefGoogle Scholar
27Terauchi, H., Ohga, T., and Naona, H., Solid State Commun. 35, 895 (1980).Google Scholar
28Horlock, R. F., Morgan, P. L., and Anderson, P. J., Trans. Faraday Soc. 59, 721 (1963).CrossRefGoogle Scholar
29Frank, F. C., in Growth and Perfection of Crystals, edited by Doremus, R. H., Roberts, B. W., and Turnbull, D. (Wiley, New York, 1958).Google Scholar
30Thomas, G., Transmission Electron Microscopy of Metals (Wiley, New York, 1962), p. 46.Google Scholar
31See Bienfait, M., Surface Sci. 162, 411 (1985), for a review of wetting and multilayer adsorption in physisorbed films.CrossRefGoogle Scholar