Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T00:26:45.723Z Has data issue: false hasContentIssue false

Electron emission from chemical vapor deposited diamond and amorphous carbon films observed with a simple field emission device

Published online by Cambridge University Press:  03 March 2011

Z. Feng
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
I.G. Brown
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
J.W. Ager III
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

Electron emission from chemical vapor deposited (CVD) diamond and amorphous carbon (a-C) films was observed with a simple field emission device (FED). Both diamond and a-C films were prepared with microwave plasma-enhanced CVD techniques. Electron emission in the ficld strength range + 10 to −10 MVm−1 was studied, and the field emission source was confirmed by a diode characteristic of the I-V curve, a straight line in the Fowler-Nordheim (F-N) plot, and direct observation of light emission from a fluorescent screen. The turn-on field strength was ∼5 MVm−1, which was similar for both kinds of carbon films. The highest current density for diamond films, observed at a field strength of 10 MVm−1, was ∼15 μA cm−2. Diamond films yielded a higher emission current than a-C films. The reasons for the observed field emission are discussed.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Geis, M. W. and Angus, J. C., Sci. Am. 267, 84 (1992).CrossRefGoogle Scholar
2Angus, J. C. and Collins, A., Nature (London) 370, 601 (1994).CrossRefGoogle Scholar
3Geis, M. W., Efremow, N. N., Woodhouse, J. D., McAleese, M.D., Marchywka, M., Socker, D. G., and Hochedez, J. F., IEEE Lett. 12, 456 (1991).CrossRefGoogle Scholar
4Wang, C., Garcia, A., Ingram, D. C., Lake, M., and Kordesch, M. E., Electron. Lett. 27, 1459 (1991).CrossRefGoogle Scholar
5Xu, N. S., Tzeng, Y., and Latham, R. V., J. Phys. D: Appl. Phys. 26, 1776 (1993).CrossRefGoogle Scholar
6Okano, K., Hoshina, K., Lida, M., Koizumi, S., and Inuzuka, T., Appl Phys. Lett. 64, 2742 (1994).CrossRefGoogle Scholar
7Himpsel, F. J., Knapp, J. A., Van Vechten, J. A., and Eastman, D. E., Phys Rev. B 20, 624 (1979).CrossRefGoogle Scholar
8Davis, H. A., Rej, D. J., Johnston, G. P., Muenchausen, R. E., Schmid, H. K., Tallant, D. R., Thompson, M., Waganaar, W. J., and Williams, D.B., IEEE Conf. Record-Abstracts, 94CH3465–2, June 6–8, 1994, Santa Fe, NM, p. 164.Google Scholar
9Brewer, M. A., Brown, I. G., Dickinson, M. R., Galvin, J. E., MacGill, R. A., and Salvadori, M. C., Rev. Sci. Instrum. 63, 3389 (1992).CrossRefGoogle Scholar
10Feng, Z., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Mater. Res. 9, 2148 (1994).CrossRefGoogle Scholar
11Anders, S., Anders, A., Brown, I. G., Wei, B., Komvopoulos, K., Ager, J. W. III, and Yu, K. M., Surf. Coat. Technol. (1995, in press).Google Scholar
12Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
13Wang, Z., Feng, Z., and Brown, I. G., unpublished.Google Scholar