Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T12:52:01.429Z Has data issue: false hasContentIssue false

Electromagnetic and microstructural investigations of a naturally grown 8° [001] tilt bicrystal of Bi2Sr2CaCu208 + x

Published online by Cambridge University Press:  31 January 2011

Jyh-Lih Wang
Affiliation:
Applied Superconductivity Center, Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706
I-Fei Tsu
Affiliation:
Applied Superconductivity Center, Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706
X. Y. Cai
Affiliation:
Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706
R. J. Kelley
Affiliation:
Applied Superconductivity Center, Department of Physics, University of Wisconsin, Madison. Wisconsin 53706
M. D. Vaudin
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
S. E. Babcock
Affiliation:
Applied Superconductivity Center, Department of Materials Science and Engineering, Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706
D. C. Larbalestier
Affiliation:
Applied Superconductivity Center, Department of Materials Science and Engineering, Materials Science Program and Department of Physics, University of Wisconsin, Madison, Wisconsin 53706
Get access

Abstract

Electromagnetic characterization and high resolution transmission electron microscopy have been conducted on the same 8° [001] symmetrical (010) tilt boundary in a naturally grown, bulk-scale bicrystal of Bi2Sr2CaCu2O8 + x (BSCCO-2212). The resistive transition showed excess resistance above and below Tc, suggesting some weak coupling at the boundary, but the inter- and intragranular voltage-current characteristics, irreversibility fields, and critical current density (Jc) values were very similar and characteristic of strongly coupled grains and grain boundary. The misorientation was accommodated by a set of partial dislocations with the Frank spacing of 1.9 nm. The dislocation cores appeared to be separated by relatively undistorted regions of crystal. The Jc, values at 25 K exceeded 103 A/cm2 in fields of several tesla, more than two orders of magnitude larger than that found earlier in [001] twist boundaries of BSCCO-2212. This result is consistent with the view that low angle [001] till boundaries play an important role for current transport in polycrystalline BSCCO tapes.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bulaevskü, L. N., Clem, J. R., Glazman, L. I., and Malozemoff, A. P., Phys. Rev. B 45, 2545 (1992).CrossRefGoogle Scholar
2.Bulaevskii, L. N., Daemen, L. L., Matey, M. P., and Coulter, J. Y., Phys. Rev. B 48, 13798 (1993).CrossRefGoogle Scholar
3.Hensel, B., Grivel, J-C., Jeremie, A., Perin, A., Pollini, A., and Flakiger, R., Physica C 205, 324 (1993).CrossRefGoogle Scholar
4.Hensel, B., Grasso, G., and Flukiger, R., Phys. Rev. B 51, 15456 (1995).CrossRefGoogle Scholar
5.Larbalestier, D. C., Cai, X. Y., Feng, Y., Edelman, H., Umezawa, A., Riley, G. N. Jr., and Carter, W. L.. Pbysica C 221, 299 (1994).CrossRefGoogle Scholar
6.Goyal, A., Specht, E. D., Kroeger, D. M., Misuri, T. A., Dingley, D. J., Riley, G. N. Jr., and Ruppich, M.W., Appl. Phys. Lett. 66, 2903 (1995).CrossRefGoogle Scholar
7.Heine, K., Tenbrink, J., and Thoner, M., Appl. Phys Lett. 55, 2441 (1989).CrossRefGoogle Scholar
8.Wang, J-L., Cai, X. Y., Kelley, R. J., Vaudin, M. D., Babcock, S. E., and Larbalestier, D. C., Physica C 230 189 (1994).CrossRefGoogle Scholar
9.Tomila, N., Takahashi, Y., Mori, M., and Ishida, Y., Jpn. J. Appi. Phys. 31, L942 (1992).Google Scholar
10.Larbalestier, D.C., Babcock, S. E., Cai, X. Y., Field, M. B., Gao, Y., Heinig, N. F., Kaiser, D. L., Merkle, K., Williams, L. K., and Zhang, N., Physica C 185–189, 315320 (1991).CrossRefGoogle Scholar
11.Mayer, B., Alff, L., Trauble, T., Gross, R., Wagner, P., and Adrian, H., Appl. Phys. Lett. 63, 996 (1993).CrossRefGoogle Scholar
12.Amrein, T., Seitz, M., Uhl, D., Schultz, L., and Urban, K., Appl. Phys. Lett. 63, 1978 (1993).CrossRefGoogle Scholar
13.Takami, T., Kurodo, K., Kojima, K., Kataoka, M., Tantmura, J., Wada, O., and Ogama, T., Jpn. J. Appl. Phys. 32, L583 (1993).CrossRefGoogle Scholar
14.Kawasaki, M., Sarnelli, E., Chaudhari, P., Gupta, A., Kussmaul, A., Lacey, J., and Lee, W., Appl. Phys Lett. 62, 417 (1993).Google Scholar
15.Dimos, D., Chaudhari, P., and Mannhanrt, J., Phy. Rev. B 41, 4038 (1990).Google Scholar
16.Ivanov, Z. G., Nilsson, P. A., Winkler, D., Alarco, J. A., Claeson, T., Stepantsov, E. A., and Tzalenchuk, A. Y.. Appl. Phys. Lett. 59, 3030 (1991).CrossRefGoogle Scholar
17.Gross, R., Chaudhari, P., Kelchen, M. B., and Gupta, M. B., Appl. Phys Lett. 57, 727 (1990).CrossRefGoogle Scholar
18.Babcock, S. E., Cai, X. Y., Kaiser, D. L., Larbalestier, D. C., Natine (London) 347, 167 (1990).CrossRefGoogle Scholar
19.Chaudhari, P., Mannhari, J., Dimos, D., Tsuei, C.C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev Lett. 60, 1653 (1988).CrossRefGoogle Scholar
20.Chisholm, M. F. and Pennycook, S.J., Nature (London) 351, 47 (1991).CrossRefGoogle Scholar
21.Mitzi, D. B., Lombardo, L.W., Kapitulnik, A., Laderman, S.S., and Jacowitz, R. D., Phys. Rev. B 41, 6564 (1990).CrossRefGoogle Scholar
22.Vaudin, M. D. and Carter, W.C., Proc. 25th Annual Meeting of the Microbeam Analysis Society, edited by Howitt, D. G. (San Francisco Press. Inc., San Francisco, CA. 1991) pp. 159162.Google Scholar
23.Koch, R. H., Foglietti, V., Gallagher, W. J., Koren, G., Gupta, A., and Fisher, M. P. A., Phys. Rev. Lett. 63, 1511 (1989).CrossRefGoogle Scholar
24.Li, Q., Wiesmann, H. J., and Suenaga, M., Phys. Rev. B 51, 1 (1995).Google Scholar
25.Mawatari, Y., Yamasaki, H., Kosaka, S., and Umeda, M., Cryogenics 35, 161 (1995).CrossRefGoogle Scholar
26.DeJong, A. F., Coene, W., and Van Dyck, D., Ultramicroscopy 27, 53 (1989).CrossRefGoogle Scholar
27.Read, W.T. Jr., Dislocations in Crystals (McGraw-Hill, New York, 1953). p. 158.Google Scholar
28.Gao, Y., Merkle, K. L., Bai, G., Chang, H. L. M., and Lam, D. J., Physica C 174, 11 (1991).CrossRefGoogle Scholar
29.Huse, D. A., Fisher, M. P. A., and Fisher, D.S., Nature (London) 358, 553 (1992).CrossRefGoogle Scholar
30.Mannhart, J., Chaudhari, P., Dimos, D., Tsuet, C.C., and McGuire, T. R., Phys. Rev. Lett. 61, 2476 (1988).CrossRefGoogle Scholar
31.Field, M. B., Pashitski, A., Polyanslcii, A., and Larbalestier, D.C., IEEE Trans. Appl. Supercond., 5 (2), 1631 (1995).CrossRefGoogle Scholar
32.Parikh, A.S., Meyer, B., and Salama, K., Supercond. Sci. Technol. 7, 455 (1994).CrossRefGoogle Scholar
33.Kleiner, R., Stemmeyer, F., Kunkel, G., and Muller, P., Phys. Rev. Lett. 68, 2394 (1992).CrossRefGoogle Scholar
34.Cho, J.H., Mayley, M.P., Fleshier, S., Lacerda, A., and Bulaevskii, L. N., Phys. Rev. B 50, 6493 (1994).CrossRefGoogle Scholar
35.Hsu, J. W. P., Mitzi, D. B., Kapitulnik, A., and Lee, M., Phys Rev Lett. 67, 2095 (1991).CrossRefGoogle Scholar
36.Cho, J.H., Maley, M. P., Willis, J. O., Coulter, J. Y., Bulaevskii, L. N., Haldar, P., and Motowidlo, L. R., Appl. Phys. Lett. 64, 3030 (1994).CrossRefGoogle Scholar
37.Matey, M. P., Cho, J.H., Coulter, J.Y., Willis, J.O., Bulaevskii, L. N., Motowidlo, L. R., and Haldar, P., IEEE Trans. Appl. Superconductivity 5 (2), 1290 (1995).Google Scholar
38.Kusagaya, K., Terai, T., Kobayashi, T., Chikumoto, N., Kishio, K., Park, K.. Advances in Superconductive VI, Proceedings of the 6th international Superconductivity Symposium (ISS 93), Hiroshima (1993). p. 555.Google Scholar
39.Suenaga, M., Li, Q., Sabatini, R. L., Shibutani, K., Hayoashi, S., Ogawa, R., Kawale, Y., Motowidlo, L., and Hadlar, P., Advances in Superconductivity VI, Proceedings of the 6th International Superconductivity Symposium (ISS 93). Hiroshima (1993). p. 541.Google Scholar
40.Kleiner, R. and Muller, P., Phys. Rev. B. 49, 1327 (1994).CrossRefGoogle Scholar
41.Luo, S., Yang, G., and Gough, C. E., Phys. Rev. B 51 6655 (1995).Google Scholar
42.Baheock, S. E. and Vargas, J. L., Annu. Rev Mater. Sci. 25 193 (1995).Google Scholar
43.Likarev, K. K., Rev Mod. Phys. 51, 101 (1979).CrossRefGoogle Scholar