Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T14:33:13.439Z Has data issue: false hasContentIssue false

Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes

Published online by Cambridge University Press:  31 January 2020

Lara G. Puppin
Affiliation:
Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP 13560970, Brazil
Mohd. Khalid
Affiliation:
Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP 13560970, Brazil
Gelson T.T. da Silva
Affiliation:
Embrapa Instrumentation, Rua XV de Novembro, São Carlos, SP 13560-970, Brazil
Caue Ribeiro
Affiliation:
Embrapa Instrumentation, Rua XV de Novembro, São Carlos, SP 13560-970, Brazil; and Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-14): Electrochemical Process Engineering, Jülich 52425, Germany
Hamilton Varela
Affiliation:
Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP 13560970, Brazil
Osmando F. Lopes*
Affiliation:
Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP 13560970, Brazil; and Laboratory of Photochemistry and Materials Science, Institute of Chemistry, Federal University of Uberlandia, Uberlandia, MG 38400902, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electrochemical reduction of CO2 to formic acid is a good strategy to address both environmental and energy issues. However, some drawbacks including low activity, selectivity, and stability of electrocatalysts must be overcome. We propose a method for tailoring Bi2O2CO3-coated carbon fiber electrodes with higher selectivity and stability for electrochemical CO2 reduction to formic acid. We evaluated the effect of Bi2O2CO3 and Nafion contents on the electrocatalysts performance for CO2 reduction reaction (CO2RR). All electrodes produced only HCOO in the liquid phase with a maximum faradaic efficiency (FE) of 69%. The electrocatalysts were stable under 24 h of continuous CO2RR operation. The FE increased with the increasing electrolyte concentration and cation radius size, which indicates that the anion stabilization in solution is critical for adequate formate generation. The CO2RR mechanism was proposed with basis on the literature. The structural carbonate of Bi2O2CO3 acts as an intermediate species in the formate production from CO2.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, X., Yu, J., Jaroniec, M., and Chen, X.: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).CrossRefGoogle ScholarPubMed
Lopes, O.F. and Varela, H.: Effect of annealing treatment on electrocatalytic properties of copper electrodes toward enhanced CO2 reduction. ChemistrySelect 3, 9046 (2018).CrossRefGoogle Scholar
Song, Y., Li, J., and Wang, C.: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).CrossRefGoogle Scholar
Feng, Z., Zeng, L., Chen, Y., Ma, Y., Zhao, C., Jin, R., Lu, Y., Wu, Y., and He, Y.: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).CrossRefGoogle Scholar
Zhang, H., Ma, Y., Quan, F., Huang, J., Jia, F., and Zhang, L.: Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets. Electrochem. Commun. 46, 63 (2014).CrossRefGoogle Scholar
Kauffman, D.R., Thakkar, J., Siva, R., Matranga, C., Ohodnicki, P.R., Zeng, C., and Jin, R.: Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 7, 15626 (2015).CrossRefGoogle ScholarPubMed
Habisreutinger, S.N., Schmidt-Mende, L., and Stolarczyk, J.K.: Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 52, 7372 (2013).CrossRefGoogle ScholarPubMed
Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., and Ye, J.: Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).CrossRefGoogle ScholarPubMed
Ganesh, I.: Electrochemical conversion of carbon dioxide into renewable fuel chemicals—The role of nanomaterials and the commercialization. Renewable Sustainable Energy Rev. 59, 1269 (2016).CrossRefGoogle Scholar
Bensaid, S., Centi, G., Garrone, E., Perathoner, S., and Saracco, G.: Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem 5, 500 (2012).CrossRefGoogle ScholarPubMed
Nocera, D.G.: Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616 (2017).CrossRefGoogle ScholarPubMed
De Tacconi, N.R., Chanmanee, W., Dennis, B.H., and Rajeshwar, K.: Composite copper oxide-copper bromide films for the selective electroreduction of carbon dioxide. J. Mater. Res. 32, 1727 (2017).CrossRefGoogle Scholar
Chen, J., Wang, G., Wang, X., Jiang, C., Zhu, S., and Wang, R.: Synthesis of highly dispersed Pd nanoparticles with high activity for formic acid electro-oxidation. J. Mater. Res. 28, 1553 (2013).CrossRefGoogle Scholar
Lim, R.J., Xie, M., Sk, M.A., Lee, J.M., Fisher, A., Wang, X., and Lim, K.H.: A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal. Today 233, 169 (2014).CrossRefGoogle Scholar
Del Castillo, A., Alvarez-Guerra, M., Solla-Gullón, J., Sáez, A., Montiel, V., and Irabien, A.: Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size. Appl. Energy 157, 165 (2015).CrossRefGoogle Scholar
Yuan, J., Zhang, X., Li, H., Wang, K., Gao, S., Yin, Z., Yu, H., Zhu, X., Xiong, Z., and Xie, Y.: TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B. Catal. Commun. 60, 129 (2014).CrossRefGoogle Scholar
Yu, X. and Pickup, P.G.: Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 182, 124 (2008).CrossRefGoogle Scholar
Hori, Y.: Electrochemical CO2 Reduction on Metal Electrodes (Springer, New York, NY 2008).CrossRefGoogle Scholar
Hori, Y. and Suzuki, S.: Electrolytic reduction of carbon dioxide at mercury electrode in aquous solution. Bull. Chem. Soc. Jpn. 55, 660 (1982).CrossRefGoogle Scholar
Lv, W., Zhang, R., Gao, P., and Lei, L.: Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J. Power Sources 253, 276 (2014).CrossRefGoogle Scholar
Baruch, M.F., Pander, J.E., White, J.L., and Bocarsly, A.B.: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148 (2015).CrossRefGoogle Scholar
Pander, J.E., Baruch, M.F., and Bocarsly, A.B.: Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal. 6, 7824 (2016).CrossRefGoogle Scholar
Zhang, Z., Chi, M., Veith, G.M., Zhang, P., Lutterman, D.A., Rosenthal, J., Overbury, S.H., Dai, S., and Zhu, H.: Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects. ACS Catal. 6, 6255 (2016).CrossRefGoogle Scholar
Zhong, H., Qiu, Y., Zhang, T., Li, X., Zhang, H., and Chen, X.: Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 4, 13746 (2016).CrossRefGoogle Scholar
Lv, W., Bei, J., Zhang, R., Wang, W., Kong, F., Wang, L., and Wang, W.: Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS Omega 2, 2561 (2017).CrossRefGoogle ScholarPubMed
Lopes, O.F., Carvalho, K.T.G., Avansi, W., Milori, D.M.B., and Ribeiro, C.: Insights into the photocatalytic performance of Bi2O2CO3/BiVO4 heterostructures prepared by one-step hydrothermal method. RSC Adv. 8, 10889 (2018).CrossRefGoogle Scholar
Detweiler, Z.M., White, J.L., Bernasek, S.L., and Bocarsly, A.B.: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 30, 7593 (2014).CrossRefGoogle ScholarPubMed
Zhang, E., Wang, T., Yu, K., Liu, J., Chen, W., Li, A., Rong, H., Lin, R., Ji, S., Zheng, X., Wang, Y., Zheng, L., Chen, C., Wang, D., Zhang, J., and Li, Y.: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16569 (2019).CrossRefGoogle ScholarPubMed
Su, P., Xu, W., Qiu, Y., Zhang, T., Li, X., and Zhang, H.: Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst. ChemSusChem 11, 848 (2018).CrossRefGoogle ScholarPubMed
Lopes, O.F., Carvalho, K.T.G., Nogueira, A.E., Avansi, W., and Ribeiro, C.: Controlled synthesis of BiVO4 photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Appl. Catal., B 188, 87 (2016).CrossRefGoogle Scholar
Lopes, O.F., Carvalho, K.T.G., Avansi, W., and Ribeiro, C.: Growth of BiVO4 nanoparticles on a Bi2O3 surface: Effect of heterojunction formation on visible irradiation-driven catalytic performance. J. Phys. Chem. C 121, 13747 (2017).CrossRefGoogle Scholar
Sieben, J.M., Duarte, M.M.E., and Mayer, C.E.: Electro-oxidation of methanol on Pt–Ru nanostructured catalysts electrodeposited onto electroactivated carbon fiber materials. ChemCatChem 2, 182 (2010).CrossRefGoogle Scholar
Kim, C., Jeon, H.S., Eom, T., Jee, M.S., Kim, H., Friend, C.M., Min, B.K., and Hwang, Y.J.: Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844 (2015).CrossRefGoogle ScholarPubMed
Spinacé, E.V., Neto, A.O., Franco, E.G., Linardi, M., and Gonzalez, E.R.: Métodos de preparação de nanopartículas metálicas suportadas em carbono de alta área superficial, como eletrocatalisadores em células a combustível com membrana trocadora de prótons. Quim. Nova 27, 648 (2004).CrossRefGoogle Scholar
Meduri, K., Stauffer, C., Qian, W., Zietz, O., Barnum, A., Johnson, G.O.B., Fan, D., Ji, W., Zhang, C., Tratnyek, P., and Jiao, J.: Palladium and gold nanoparticles on carbon supports as highly efficient catalysts for effective removal of trichloroethylene. J. Mater. Res. 33, 2404 (2018).CrossRefGoogle Scholar
Duan, H., Li, Y., Lv, X., Chen, D., Long, M., and Wen, L.: CuO–ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis—The role of ZnO. J. Mater. Res. 33, 1625 (2018).CrossRefGoogle Scholar
Liu, Y., Huang, Q., Jiang, G., Liu, D., and Yu, W.: Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 32, 3605 (2017).CrossRefGoogle Scholar
Pak, C., Kang, S., Suk Choi, Y., and Change, H.: Nanomaterials and structures for the fourth innovation of polymer electrolyte fuel cell. J. Mater. Res. 25, 2063 (2010).CrossRefGoogle Scholar
Hsieh, Y-C., Senanayake, S.D., Zhang, Y., Xu, W., and Polyansky, D.E.: Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 5, 5349 (2015).CrossRefGoogle Scholar
Antolini, E.: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B 88, 1 (2009).CrossRefGoogle Scholar
Antolini, E.: Formation of carbon-supported PtM alloys for low temperature fuel cells: A review. Mater. Chem. Phys. 78, 563 (2003).CrossRefGoogle Scholar
Lin, Z., Ji, L., Toprakci, O., Krause, W., and Zhang, X.: Electrospun carbon nanofiber-supported Pt–Pd alloy composites for oxygen reduction. J. Mater. Res. 25, 1329 (2010).CrossRefGoogle Scholar
Wuttig, A. and Surendranath, Y.: Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5, 4479 (2015).CrossRefGoogle Scholar
Bevilacqua, M., Filippi, J., Folliero, M., Lavacchi, A., Miller, H.A., Marchionni, A., and Vizza, F.: Enhancement of the efficiency and selectivity for carbon dioxide electroreduction to fuels on tailored copper catalyst architectures. Energy Technol. 4, 1020 (2016).CrossRefGoogle Scholar
Pawar, S.M., Pawar, B.S., Hou, B., Kim, J., Aqueel Ahmed, A.T., Chavan, H.S., Jo, Y., Cho, S., Inamdar, A.I., Gunjakar, J.L., Kim, H., Cha, S., and Im, H.: Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. J. Mater. Chem. A 5, 12747 (2017).CrossRefGoogle Scholar
Alothman, Z.A.: A review: Fundamental aspects of silicate mesoporous materials. Materials 5, 2874 (2012).CrossRefGoogle Scholar
Salazar-Villalpando, M.D.: Effect of electrolyte on the electrochemical reduction of CO2 maria. ECS Trans. 33, 77 (2011).CrossRefGoogle Scholar
Resasco, J., Lum, Y., Clark, E., Zeledon, J.Z., and Bell, A.T.: Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064 (2018).CrossRefGoogle Scholar
Ren, D., Deng, Y., Handoko, A.D., Chen, C.S., Malkhandi, S., and Yeo, B.S.: Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814 (2015).CrossRefGoogle Scholar
Qiao, J., Liu, Y., Hong, F., and Zhang, J.: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631 (2014).CrossRefGoogle ScholarPubMed
Salazar-villalpando, M.D.: Effect of electrolyte on the electrochemical reduction of CO2. ECS Trans. 33, 77 (2011).CrossRefGoogle Scholar
Thorson, M.R., Siil, K.I., and Kenis, P.J.A.: Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69 (2013).CrossRefGoogle Scholar
Lee, S., Ocon, J.D., Il Son, Y., and Lee, J.: Alkaline CO2 electrolysis toward selective and continuous HCOO– production over SnO2 nanocatalysts. J. Phys. Chem. C 119, 4884 (2015).CrossRefGoogle Scholar
Kumar, B., Atla, V., Brian, J.P., Kumari, S., Nguyen, T.Q., Sunkara, M., and Spurgeon, J.M.: Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem., Int. Ed. 56, 3645 (2017).CrossRefGoogle ScholarPubMed
Del Castillo, A., Alvarez-Guerra, M., Solla-Gullón, J., Sáez, A., Montiel, V., and Irabien, A.: Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formate. J. CO2 Util. 18, 222 (2017).CrossRefGoogle Scholar
Supplementary material: File

Puppin et al. supplementary material

Puppin et al. supplementary material

Download Puppin et al. supplementary material(File)
File 2 MB