Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T08:45:28.693Z Has data issue: false hasContentIssue false

Electrochemical codeposition of indium and antimony from a chloroindate molten salt

Published online by Cambridge University Press:  03 March 2011

Michael K. Carpenter
Affiliation:
Physical Chemistry Department, General Motors NAO Research and Development Center, Warren, Michigan 48090-9055
Mark W. Verbrugge
Affiliation:
Physical Chemistry Department, General Motors NAO Research and Development Center, Warren, Michigan 48090-9055
Get access

Abstract

The electrochemical codeposition of In and Sb from a novel low temperature molten salt electrolyte is reported. The melt, which consists of InCl3 and 1-methyl-3-ethylimidazolium chloride, allows the codeposition to be accomplished at 45 °C. XPS shows that InSb can be deposited from this system. Electrochemical experiments are provided along with an interpretation that draws on the importance of In(I) species in the melt.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Willardson, R. K. and Beer, A. C., Electrical Manufacturing, Jan. (1956).Google Scholar
2Kittel, C., Introduction to Solid State Physics, 5th ed. (John Wiley & Sons, New York, 1976), p. 231.Google Scholar
3Sadana, Y. N. and Singh, J. P., Plating and Surface Finishing 72, 64 (1985).Google Scholar
4Okubo, T. and Landau, U., Electrochemical Society Meeting, Chicago, IL, October 9-14, 1988, Abstract 376.Google Scholar
5Cuomo, J. J. and Gambino, R. J., J. Electrochem. Soc. 115, 755 (1968).CrossRefGoogle Scholar
6Elwell, D., Feigelson, R. S., and Simkins, M. M., J. Cryst. Growth 51, 171 (1981).CrossRefGoogle Scholar
7DeMattei, R. C., Elwell, D., and Feigelson, R. S., J. Cryst. Growth 43, 643 (1978).CrossRefGoogle Scholar
8Dioum, I. G., Vedel, J., and Tremillion, B., J. Electroanal. Chem. 139, 329 (1982).CrossRefGoogle Scholar
9Wicelinski, S. P. and Gale, R. J., Proc. 5th Int. Symp. on Molten Salts (The Electrochemical Society, Pennington, NJ, 1986), p. 144.Google Scholar
10Carpenter, M. K. and Verbrugge, M. W., J. Electrochem. Soc. 137, 123 (1990).CrossRefGoogle Scholar
11Verbrugge, M. W. and Carpenter, M. K., AIChE J. 36, 1097 (1990).CrossRefGoogle Scholar
12Wilkes, J. S., Levisky, J. A., Wilson, R.A., and Hussey, C. L., Inorg. Chem. 21, 1263 (1982).CrossRefGoogle Scholar
13Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M.P. (John Wiley & Sons, New York, 1983), Appendix 4.Google Scholar
14Wilkes, J. S., Levisky, J. A., and Druelinger, M. L., Proc. Int. Symp. on Molten Salts (The Electrochemical Society, Pennington, NJ, 1981), p. 245.Google Scholar
15Fannin, A. A. Jr., Floreani, D. A., King, L.A., Landers, J. S., Piersma, B. J., Stech, D.J., Vaughn, R. L., Wilkes, J.S., and Williams, J. L., J. Phys. Chem. 88, 2614 (1984).CrossRefGoogle Scholar
16Zawodzinski, T.A. Jr. and Osteryoung, R.A., Inorg. Chem. 28, 1710 (1989).CrossRefGoogle Scholar
17Wicelinski, S. P., Gale, R. J., and Wilkes, J. S., J. Electrochem. Soc. 34, 262 (1987).CrossRefGoogle Scholar
18Clarke, J.H.R. and Hester, R.E., J. Chem. Phys. 50, 3106 (1969).CrossRefGoogle Scholar
19Floreani, D., Stech, D., Wilkes, J., Williams, J., Piersma, B., King, L., and Vaughn, R., Proc. of 30th Power Sources Symposium (PSC Publications Committee, Red Bank, NJ, 1982), p. 84.Google Scholar
20Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry: A Comprehensive Text, 3rd ed. (Interscience Publishers, New York, 1972), p. 380.Google Scholar
21Headridge, J.B. and Pletcher, D., Inorg. Nucl. Chem. Lett. 3, 475 (1967).CrossRefGoogle Scholar
22Ashraf, M., Aziz-Alrahman, A. M., and Headridge, J. B., J. Chem. Soc, Dalton Trans., 170 (1977).Google Scholar
23Newman, J. S., Electrochemical Systems (Prentice-Hall, Englewood Cliffs, NJ, 1973), p. 221.Google Scholar
24Carpio, R.A., King, L. A., Lindstrom, R.E., Nardi, J. C., and Hussey, C. L., J. Electrochem. Soc. 126, 1644 (1979).CrossRefGoogle Scholar
25Wojtowicz, J., in Modern Aspects of Electrochemistry, Vol. 8, edited by Bockris, J. O. M. and Conway, B. (Plenum Press, New York, 1972), Chap. 2.Google Scholar
26Russell, P. and Newman, J., J. Electrochem. Soc. 134, 1051 (1987).CrossRefGoogle Scholar
27Wagner, C.D., Riggs, W. M., Davis, L.E., Moulder, J. F., and Muilenberg, B. E., Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Industries, Eden Prairie, MN, 1979).Google Scholar
28Copperthwaite, R.G., Kunze, O. A., Lloyd, J., Neely, J. A., and Tuma, W., Z. Naturforsch. 33A, 523 (1978).CrossRefGoogle Scholar
29Okimura, H., Matsumae, T., and Ohshita, M., J. Appl. Phys. 66, 4252 (1989).CrossRefGoogle Scholar