Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T20:59:50.971Z Has data issue: false hasContentIssue false

Electrochemical and Thermal Properties of Hydrogen-absorbed Mg67Ni28Pd5 Amorphous Alloy

Published online by Cambridge University Press:  31 January 2011

Shin-Ichi Yamaura
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Keita Isogai
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Hisamichi Kimura
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Get access

Abstract

We have examined electrochemical properties and thermal stability of the amorphous Mg67Ni28Pd5 alloy produced by melt-spinning subjected to electrochemical hydrogen charge. In the cyclic life test, the discharge capacity of the alloy increases significantly with increasing cycle number and reaches 411 mA h/g at the 15th cycle. Thehydrogen-absorbed amorphous alloy crystallizes through two stages of primarycrystallization of Mg2Ni, followed by precipitation of Mg2NiH4 at the second stage.The completed crystallization temperature of the hydrogen-absorbed alloy increases by 65 K as compared with the as-solidified one. It is thus concluded that stability of theMg-based amorphous alloy against crystallization increases by hydrogen absorption.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reilly, J.J. and Wishall, R.H., J. Inorg. Chem. 7, 254 (1968).CrossRefGoogle Scholar
Lei, Y.Q., Wu, Y.M., Yang, Q.M., Wu, J., and Wang, Q.D., Z. Phys. Chem. 183, 379 (1994).CrossRefGoogle Scholar
Sun, D.L., Lei, Y.Q., Liu, W.H., Jiang, J.J., Wu, J., and Wang, Q.D., J. Alloys Compd. 231, 621 (1995).CrossRefGoogle Scholar
Iwakura, C., Nohara, S., Inoue, H., and Fukumoto, Y., Chem. Commun. 15, 1831 (1996).CrossRefGoogle Scholar
Yang, Q.M., Lei, Y.Q., Chen, C.P., Wu, J., Wang, Q.D., Lu, G.L., and Chen, L.S., Z. Phys. Chem. 183, 141 (1994).CrossRefGoogle Scholar
Orimo, S. and Fujii, H., J. Alloys Compd. 232, L16 (1996).CrossRefGoogle Scholar
Iwakura, C., Inoue, H., Zhang, S.G., and Nohara, S., J. Alloys Compd. 270, 142 (1998).CrossRefGoogle Scholar
Kohno, T., Tsuruta, S., and Kanda, M., J. Electrochem. Soc. 143, L198 (1996).CrossRefGoogle Scholar
Kohno, T. and Kanda, M., J. Electrochem. Soc. 144, 2384 (1997).CrossRefGoogle Scholar
Nohara, S., Fujita, N., Zhang, S.G., Inoue, H., and Iwakura, C., J. Alloys Compd. 267, 76 (1998).CrossRefGoogle Scholar
Iwakura, C., Nohara, S., Zhang, S.G., and Inoue, H., J. Alloys Compd. 285, 246 (1999).CrossRefGoogle Scholar
Sommer, F., Bucher, G., and Predel, B., J. Phys. Chem. 183, 185 (1994).Google Scholar
Kim, S.G., Inoue, A., and Masumoto, T., Mater. Trans., JIM 30, 929 (1990).CrossRefGoogle Scholar
Goo, N.H., Woo, J.H., and Lee, K.S., J. Alloys Compd. 288, 286 (1999).CrossRefGoogle Scholar
Liu, W., Wu, H., Lei, Y., Wang, Q., and Wu, J., J. Alloys Compd. 261, 289 (1997).CrossRefGoogle Scholar
Woo, J.H., Jung, C.B., Lee, J.H., and Lee, K.S., J. Alloys Compd. 293–295, 556 (1999).CrossRefGoogle Scholar
Nohara, S., Fujita, N., Zhang, S.G., Inoue, H., and Iwakura, C., J. Alloys Compd. 267, 76 (1998).CrossRefGoogle Scholar
Nohara, S., Hamasaki, K., Zhang, S.G., Inoue, H., and Iwakura, C., J. Alloys Compd. 280, 104 (1998).CrossRefGoogle Scholar
Orimo, S., Ikeda, K., Fujii, H., Saruki, S., Fukunaga, T., Zuttel, A., and Schlapbach, L., Acta Mater. (in press).Google Scholar
Orimo, S., Ikeda, K., Fujii, H., Fujikawa, Y., Kitano, Y., and Yamamoto, K., Acta Mater. 45, 2271 (1997).CrossRefGoogle Scholar
Orimo, S., Fujii, H., Ikeda, K., Fujikawa, Y., and Kitano, Y., J. Alloys Compd. 253–254, 94 (1997).CrossRefGoogle Scholar
Orimo, S. and Fujii, H., Intermetallics 6, 185 (1998).CrossRefGoogle Scholar
Orimo, S., Zuettel, A., Ikeda, K., Saruki, S., Fukunaga, T., Fujii, H., and Schlapbach, L., J. Alloys Compd. 293–295, 437 (1999).CrossRefGoogle Scholar
Menzel, D., Niklas, A., and Koester, U., Mater. Sci. Eng. A 133, 312 (1991).CrossRefGoogle Scholar
Maeland, A.J., Tannerand, L.E., and Libowitz, G.G., J. Less-Common Met. 74, 279 (1980).CrossRefGoogle Scholar