Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T01:59:17.838Z Has data issue: false hasContentIssue false

Electrochemical and ex-situ analysis on manganese oxide/graphene hybrid anode for lithium rechargeable batteries

Published online by Cambridge University Press:  23 September 2011

Haegyeom Kim
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Sung-Wook Kim
Affiliation:
Research Institute of Advanced Materials, Seoul National University, Seoul 151-742, Republic of Korea
Jihyun Hong
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Young-Uk Park
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Kisuk Kang*
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A Mn3O4/graphene hybrid material is fabricated using a facile and simple in-situ reduction process and shown to be a promising anode for lithium rechargeable batteries. The hybrid material retains a high capacity with a good cycle life of up to 990 mAh g−1 after 30 cycles. The excellent electrochemical performance is attributable to the unique nanostructure of the hybrid material. Highly crystalline Mn3O4 particles (20–30 nm) are uniformly dispersed on graphene whose high electronic conductivity and high surface area provide a conductive percolating network throughout the electrode in the hybrid material. The conductive graphene networks enhance an electron transfer in the electrode and promote the electrochemical activity of the crystalline Mn3O4.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tarascon, J-M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).CrossRefGoogle ScholarPubMed
2.Zhang, W-M., Hu, J-S., Guo, Y-G., Zheng, S-F., Zhong, L-S., Song, W-G., and Wan, L-J.: Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode materials in lithium-ion batteries. Adv. Mater. 20, 1160 (2008).CrossRefGoogle Scholar
3.Lou, X.W., Wang, Y., Yuan, C., Lee, J.Y., and Archer, L.A.: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).CrossRefGoogle Scholar
4.Yao, J., Shen, X., Wang, B., Liu, H., and Wang, G.: In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11, 1849 (2009).CrossRefGoogle Scholar
5.Liu, Y. and Zhang, X.: Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim. Acta 54, 4180 (2009).CrossRefGoogle Scholar
6.Paek, S-M., Yoo, E., and Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72 (2009).CrossRefGoogle ScholarPubMed
7.Chan, C.K., Peng, C.K., Liu, G., Mcllwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle ScholarPubMed
8.Ryu, J., Kim, S-W., Kang, K., and Park, C.B.: Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 4, 159 (2010).CrossRefGoogle ScholarPubMed
9.Kim, H., Seo, D-H., Kim, S-W., Kim, J., and Kang, K.: Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49, 326 (2011).CrossRefGoogle Scholar
10.Qiang, S. and Wang, Y.: Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 20, 9735 (2010).Google Scholar
11.Yang, S., Cui, G., Pang, S., Cao, Q., Kolb, U., Feng, X., Maier, J., and Mullen, K.: Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem. 3, 236 (2010).CrossRefGoogle ScholarPubMed
12.Li, W-Y., Xu, L-N., and Chen, J.: Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851 (2005).CrossRefGoogle Scholar
13.Park, J.C., Kim, J., Kwon, H., and Song, H.: Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 21, 803 (2009).CrossRefGoogle Scholar
14.Gao, X.P., Bao, J.L., Pan, G.L., Zhu, H.Y., Huang, P.X., Wu, F., and Song, D.Y.: Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 108, 5547 (2004).CrossRefGoogle Scholar
15.Nuli, Y-N., Zhao, S-L., and Qin, Q-Z.: Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries. J. Power Sources 113, 113 (2003).CrossRefGoogle Scholar
16.Varghese, B., Reddy, M.V., Yanwu, Z., Lit, C.S., Hoong, T.C., Rao, G.V.S., Chowdari, B.V.R., Wee, A.T.S., Lim, C.T., and Sow, C-H.: Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20, 3360 (2008).CrossRefGoogle Scholar
17.Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J-M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).CrossRefGoogle ScholarPubMed
18.Do, J-S. and Weng, C-H.: Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries. J. Power Sources 159, 323 (2006).CrossRefGoogle Scholar
19.Pasero, D., Reeves, N., and West, A.R.: Co-doped Mn3O4: A possible anode material for lithium batteries. J. Power Sources 141, 156 (2005).CrossRefGoogle Scholar
20.Wang, H., Cui, L-F., Yang, Y., Casalongue, H.S., Robinson, J.T., Liang, Y., Cui, Y., and Dai, H.: Mn3O4-graphene hybrid as a high-capacity material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978 (2010).CrossRefGoogle ScholarPubMed
21.Yu, X.Q., He, Y., Sun, J.P., Tang, K., Li, H., Chen, L.Q., and Huang, X.J.: Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem. Commun. 11, 791 (2009).CrossRefGoogle Scholar
22.Fang, X., Lu, X., Guo, X., Mao, Y., Hu, Y-S., Wang, J., Wang, Z., Wu, F., Liu, H., and Chen, L.: Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem. Commun. 12, 1520 (2010).CrossRefGoogle Scholar
23.Thackeray, M.M., David, W.I.F., Bruce, P.G., and Goodenough, J.B.: Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461 (1983).CrossRefGoogle Scholar
24.Fan, Q. and Whittingham, M.S.: Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries. Solid-State Lett. 10, A48 (2007).CrossRefGoogle Scholar
25.Hummers, W.S. and Offenman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
26.Guo, P., Song, H., and Chen, X.: Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 11, 1320 (2009).CrossRefGoogle Scholar
27.Kim, H., Kim, S-W., Park, Y-U., Gwon, H., Seo, D-H., Kim, Y., and Kang, K.: SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 3, 813 (2010).CrossRefGoogle Scholar
28.Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., and Kern, K.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499 (2007).CrossRefGoogle ScholarPubMed
29.Chen, S., Zhu, J., Wu, X., Han, Q., and Wang, X.: Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822 (2010).CrossRefGoogle ScholarPubMed
30.Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfolated graphite oxide. Carbon 45, 1558 (2007).CrossRefGoogle Scholar
31.Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
32.Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
33.Julien, C.M. and Massot, M.: Raman spectroscopic studies of lithium manganates with spinel structure. J. Phys. Condens. Matter 15, 3151 (2003).CrossRefGoogle Scholar
34.Dubal, D.P., Dhawale, D.S., Salunkhe, R.R., and Lokhande, C.D.: Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapcitive studies. J. Alloy. Compd. 496, 370 (2010).CrossRefGoogle Scholar
35.Ban, C., Wu, Z., Gillaspie, D.T., Chen, L., Yan, Y., Blackburn, J.L., and Dillon, A.C.: Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 22, E145 (2010).CrossRefGoogle ScholarPubMed
36.Tamura, S., Imanaka, N., Kamikawa, M., and Adachim, G-Y.: A CO2 sensor based on a trivalent ion conducting Sc1/3Zr2(PO4)3 solid electrolyte. Adv. Mater. 12, 898 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
37.Huang, X., Pan, C., and Huang, X.: Preparation and characterization of γ-MnO2/CNTs nanocomposite. Mater. Lett. 61, 934 (2007).CrossRefGoogle Scholar
38.Kim, H., Kim, S-W., Hong, J., Lim, H-D., Kim, H.S., Yoo, J-K., and Kang, K.: Graphene-based hybrid electrode material for high-power lithium-ion batteries. J. Electrochem. Soc. 158, A930 (2011).CrossRefGoogle Scholar