Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T02:36:28.417Z Has data issue: false hasContentIssue false

Electrical resistivity of fluorinated carbon black

Published online by Cambridge University Press:  31 January 2011

Matthew H. Luly
Affiliation:
Allied-Signal Inc., Buffalo Research Laboratory, Buffalo, New York 14210
Get access

Abstract

The electrical resistivity of fluorinated carbon black particles, CFx, is reported as a function of fluorine content, pressure, and temperature. Fluorination does not destroy the aggregate structure of carbon black, but does change its physical properties. The resistivity changes from 10−2 to 10+12 Ω cm as x increases from 0 to 1.2, with a very rapid change occurring in the range 0.08≤x≤0.27. Samples with x = 0 and x = 0.07 exhibit a pressure dependence described by p∝ P−s with s>0. Fully fluorinated samples (x = 1.2) have s≃0. Intermediate compositions have low-pressure regimes where the resistivity is independent of pressure, and high-pressure regimes with s>0. For all samples exhibiting pressure-dependent resistivity, s increases as x increases. For samples with low-fluorine content, the resisitivity increases with decreasing temperature. These observations are interpreted in terms of structure, especially surface structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ruff, O., Bretschneider, C., and Ebert, F., Z. Anorg. Allg. Chem. 217, 1 (1934).Google Scholar
2Brodd, R. J., Kozawa, A., and Kordesch, K. V., J. Electrochem. Soc. 125, 271C (1978).Google Scholar
3Watanabe, N., Kidekazu, T., Nakajima, T., Bartlett, N., Mallouk, T., and Selig, H., in Inorganic Solid Fluorides Chemistry and Physics, edited by Hagenmuller, P. (Academic, Orlando, FL, 1985), pp. 331369.CrossRefGoogle Scholar
4Maloney, L., Design News 42, 70 (1986).Google Scholar
5Uozumi, S., Miki, A., Yamagata, T., Sone, I., and Amekawa, H., Japanese Patent No. 61 42, 865 (1986).Google Scholar
6Ishikawa, T. and Takeda, Y., Kagaku Kogyo 24, 189 (1973).Google Scholar
7Fusaro, R., Wear 53, 303 (1979).Google Scholar
8Hasegawa, T., Toma, H., Satomi, K., and Miyamae, T., United States Patent No. 4,141, 849 (1979).Google Scholar
9Luly, M., Lockyer, G., Eibeck, R., and Gaynoer, J., United States Patent No. 4,524, 119 (1985).Google Scholar
10Japanese Patent No. 61 195, 581 (1986).Google Scholar
11Japanese Patent No. 61 195, 582 (1986).Google Scholar
12Colas, H., Lopez, L., Ruaux, R., and Maire, J., Etud, C. R. Journess. Solides Finement Div. 1967, 83.Google Scholar
13Watanabe, N., Kita, Y., and Mochizuki, O., Carbon 17, 359 (1979).Google Scholar
14Vlasov, S. V. and Forenkova, L. G., Izv. Akad. Nauk SSSR Neorg. Mater. 21, 1434 (1985).Google Scholar
15Streifinger, L., Boehm, H. P., Schogl, R., and Pentenrieder, R., Carbon 17, 195 (1979).Google Scholar
16Mrozowski, S., in the Proceedings of the Third Conference on Carbon, edited by Mrozowski, S. (Pergamon, New York, 1959), pp. 495508.Google Scholar
17Mrozowski, S., Chaberski, A., Loebner, E. E., and Pinnick, H. T., in the Proceedings of the Third Conference on Carbon, edited by Mrozowski, S. (Pergamon, New York, 1959), pp. 211222.Google Scholar
18Espinola, A., Miguel, P., Salles, M., and Pinto, A., Carbon 24, 337 (1986).Google Scholar
19Decruppe, J., Dujardin, F., Charlier, M., and Charlier, A., Carbon 17, 237 (1979).Google Scholar
20Noda, T., Kato, H., Takasu, T., Okura, A., and Inagaki, M., Bull. Chem. Soc. Jpn. 39, 829 (1966).Google Scholar
21Clark, D. T. and Peeling, J., J. Polym. Sci. Polym. Chem. Ed. 14, 2941 (1976).Google Scholar
22Iijima, S., J. Cryst. Growth 50, 675 (1980).Google Scholar
23Iijima, S., J. Phys. Chem. 91, 3466 (1987).Google Scholar
24Kita, Y., Watanabe, N., Fujii, Y., J. Amer. Chem. Soc. 101, 3832 (1979).Google Scholar
25Touhara, H., Kadono, K., Fujii, Y., and Watanabe, N., Z. Anorg. Allg. Chem. 544, 7 (1987).Google Scholar
26Ebert, L. B., Brauman, J. I., and Huggins, R. A., J. Am. Chem. Soc. 96, 7841 (1974).Google Scholar
27Mallouk, T. and Bartlett, N., J. Chem. Soc. Chem. Commun. 1983, 103.Google Scholar
28Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, Philadelphia, PA, 1985), p. 17.CrossRefGoogle Scholar
29Percolation Structures and Processes, Annals of the Israel Physical Society (Hilger, Bristol, 1983), Vol. 5.Google Scholar
30Palchan, I., Davidov, D., and Selig, H., J. Chem. Soc. Chem. Commun. 12, 657 (1983).CrossRefGoogle Scholar
31Davidov, R., Milo, O., Palehan, I., and Selig, H., Synth. Met. 8, 83 (1983).Google Scholar
32Palchan, I., Davidov, D., Zezin, V., Polatsek, G., and Selig, H., Synth. Met. 12, 413 (1985).Google Scholar
33Ebert, L. B., in the Proceedings of the Workshop on the Electrochemistry of Carbon, edited by Sarangapani, S., Akridge, J., and Schumm, B. (Electrochemical Society, Pennington, NJ, 1984), pp. 595607.Google Scholar
34Lagow, R., Badachhape, R., Wood, J., and Margrave, J., J. Am. Chem. Soc. 96, 2628 (1974).Google Scholar
35Lomovskii, O. I., Gavrilov, E. F., and Makotchenko, V. G., Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk 1, 21 (1983).Google Scholar
36Rudorff, W. and Rudorff, G., Chem. Ber. 80, 417 (1947).Google Scholar