Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:12:16.917Z Has data issue: false hasContentIssue false

Electrical resistivity of carbon black loaded polyethylene modified by ion implantation

Published online by Cambridge University Press:  03 March 2011

Václav Švorčik
Affiliation:
Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague, Czech Republic
Vladimír Rybka
Affiliation:
Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague, Czech Republic
Oleg Jankovskij
Affiliation:
Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague, Czech Republic
Vladimír Hnatowicz
Affiliation:
Institute of Nuclear Physics, Academy of Sciences of Czech Republic, 250 68 Řež, Czech Republic
Jiří Kvítek
Affiliation:
Institute of Nuclear Physics, Academy of Sciences of Czech Republic, 250 68 Řež, Czech Republic
Get access

Abstract

Different properties of the mixtures of polyethylene with carbon black modified by the implantation of Sb+ ions were studied. Chemical changes of polymer were examined by IR- and UV-visible spectroscopy. Sheet resistivity as a function of sample temperature was studied. Depth profiles of implanted Sb atoms and incorporated oxygen were determined by the Rutherford backscattering technique. The percolation threshold of unimplanted mixtures is found at 4.5 and 5 wt. % of carbon black. As a result of ion implantation, the polymer is oxidized and conjugated double bonds are produced. The mixtures with carbon black concentration above percolation threshold exhibit metal-like conductivity. For the mixtures below percolation threshold, the measurements of resistivity versus temperature dependence indicate semiconductor type conductivity and charge transport via a variable range-hopping mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aminabhavi, T. J., Cassidy, P. E., and Thompson, C. M., Rubber Chem. Technol. 63, 451 (1990).CrossRefGoogle Scholar
2Nakajima, N. and Harrell, E. R., Rubber Chem. Technol. 57, 153 (1984).CrossRefGoogle Scholar
3Cotten, G. R., Rubber Chem. Technol. 58, 774 (1985).CrossRefGoogle Scholar
4Kost, J., Narkis, M., and Foux, A., Polym. Eng. Sci. 23, 567 (1983).CrossRefGoogle Scholar
5Narkis, M. and Vaxman, A., J. Appl. Polym. Sci. 29, 1639 (1984).CrossRefGoogle Scholar
6Dresselhaus, M. S., Wasserman, B., and Wnek, G. E., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C.W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1984), p. 413.Google Scholar
7Wasserman, B., Braunstein, G., Dresselhaus, M. S., and Wnek, G. E., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1984), p. 423.Google Scholar
8Švorčik, V., Rybka, V., Endrst, R., Hnatowicz, V., and Kvítek, J., J. Electrochem. Soc. 140, 549 (1993).CrossRefGoogle Scholar
9Švorčik, V., Rybka, V., Volka, K., Hnatowicz, V., and Kvítek, J., Appl. Phys. Lett. 61, 1168 (1992).CrossRefGoogle Scholar
10Blythe, A. R., Electrical Properties of Polymers (Cambridge University Press, Cambridge, U.K., 1979).Google Scholar
11Putten, D., Moonen, J. T., Brom, H. B., Brokhen-Zijp, J. C. M., and Michels, M. A. J., Phys. Rev. Lett. 69, 494 (1992).CrossRefGoogle Scholar
12Ranby, B. and Rabek, J. F., Photodegradation, Photo-oxidation and Photostabilization of Polymers (John Wiley, London, 1975).Google Scholar
13Hnatowicz, V., Kvítek, J., Švorčik, V., and Rybka, V., Appl. Phys. (in press).Google Scholar
14Bradley, D. D. C., J. Phys. D., Appl. Phys. 20, 1389 (1987).CrossRefGoogle Scholar
15Campbell, J., Hangal, P., and Kadaba, P. K., Indian. J. Phys. A 65, 57 (1991).Google Scholar
16Walley, P. A., Thin Solid Films 2, 327 (1968).CrossRefGoogle Scholar
17Mell, H., Proc. 5th Int. Conf. Amorphous and Liquid Semiconductors, edited by Stuke, J. and Brenig, W. (1974), p. 203.Google Scholar
18Mott, N., Metal Insulator Transitions (Taylor & Francis, London, 1990).CrossRefGoogle Scholar
19Feurer, T., Sauerbrey, R., Smayling, M. X., and Story, B. J., Appl. Phys. A 56, 275 (1993).CrossRefGoogle Scholar