Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:38:33.208Z Has data issue: false hasContentIssue false

Electrical conduction in composites of nanosized iron particles and oxide glasses

Published online by Cambridge University Press:  03 March 2011

S. Roy
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta: 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta: 700 032, India
Get access

Abstract

Nanocomposites involving iron particles in silica glass matrix have been synthesized by the hot pressing of suitably reduced precursor gel powders. The metal particles have diameters in the range 3.8 to 10.2 nm. An almost four orders of magnitude resistivity range at room temperature has been obtained by such changes in particle diameters. The resistivity in the temperature range 200-340 K shows a fractional temperature dependence with an average value of n ∼ 0.69. The resistivity changes in this temperature region can be explained on the basis of an electron tunneling mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W.A. III, Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
2Birringer, R., Gleiter, H., Klein, H. P., and Marquardt, P., Phys. Lett. A 102, 365 (1984).CrossRefGoogle Scholar
3Meyer, M., Walberg, C., Kurihara, K., and Fendler, J. H., J. Chem. Soc. Chem. Commun., 90 (1984).CrossRefGoogle Scholar
4Rosetti, R., Ellison, J. L., Gibson, H. M., and Brus, L. E., J. Chem. Phys. 80, 4464 (1984).CrossRefGoogle Scholar
5Linderoth, S. and Morup, S., J. Appl. Phys. 67, 4496 (1990).CrossRefGoogle Scholar
6Roy, B. and Chakravorty, D., J. Phys.: Condens. Matter 2, 9323 (1990).Google Scholar
7Chatterjee, A. and Chakravorty, D., J. Mater. Sci. 27, 4115 (1992).Google Scholar
8Roy, S., Chatterjee, A., and Chakravorty, D., J. Mater. Res. 8, 689 (1993).CrossRefGoogle Scholar
9Adkins, C. J., J. Phys. C: Solid State Physics 15, 7143 (1982).Google Scholar
10Hill, R. M., Phys. Status Solidi A 35, K29 (1976).CrossRefGoogle Scholar
11Moyo, N. D. and Leaver, K. D., J. Phys. D: Appl. Phys. 13, 1511 (1980).CrossRefGoogle Scholar
12Chatterjee, A. and Chakravorty, D., J. Phys. D: Appl. Phys. 23, 1097 (1990).CrossRefGoogle Scholar
13Abeles, B., Sheng, P., Courts, M. D., and Arie, Y., Adv. Phys. 24, 407 (1975).CrossRefGoogle Scholar
14Simon, R. W., Dalrymple, B. J., Van Vechten, D., Fuller, W. W., and Wolf, S. A., Phys. Rev. B 36, 1962 (1987).CrossRefGoogle Scholar