Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:36:04.406Z Has data issue: false hasContentIssue false

Elastic strain gradients and x-ray line broadening effects as a function of temperature in aluminum thin films on silicon

Published online by Cambridge University Press:  03 March 2011

Ramnath Venkatraman
Affiliation:
Microelectronics, IBM Corporation, 1701 North Street, Endicott, New York 13760
Paul R. Besser
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
John C. Bravman
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Sean Brennan
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, California 94305
Get access

Abstract

Grazing incidence x-ray scattering (GIXS) with a synchrotron source was used to measure elastic strain gradients as a function of temperature in aluminum and aluminum alloy thin films of different thicknesses on silicon. The stresses in the films are induced as a result of the difference in thermal expansion coefficient between film and substrate. Disregarding minor deviations at the surface, it is shown that there are no gross strain gradients in these films in the range of temperatures (between room temperature and 400 °C) considered. Significant x-ray line broadening effects were observed, suggesting an accumulation of dislocations on cooling the films and their annealing out as the films were being reheated. The variation of the dislocation density during thermal cycling compares well in nature with that of the concurrent variation in film stress, indicating that large strain hardening effects contribute toward the film flow stress.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gardner, D. S. and Flinn, P. A., IEEE Trans. Electron Dev. 35, 2160 (1988).CrossRefGoogle Scholar
2Flinn, P. A., Gardner, D. S., and Nix, W. D., IEEE Trans. Electron Dev. ED–34, 689 (1987).CrossRefGoogle Scholar
3von Preissig, F. J., J. Appl. Phys. 66, 4262 (1989).CrossRefGoogle Scholar
4Murakami, M., Acta Metall. 26, 175 (1978).CrossRefGoogle Scholar
5Thompson, C. V., Ann. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
6Jackson, M. S. and Li, Che-Yu, Acta Metall. 30, 1993 (1982).CrossRefGoogle Scholar
7Ovecoglu, M. L., Barnett, D. M., and Nix, W. D., Acta Metall. 35, 2947 (1987).CrossRefGoogle Scholar
8Doerner, M. F. and Brennan, S., J. Appl. Phys. 63, 126 (1988).CrossRefGoogle Scholar
9Shute, C. J. and Cohen, J. B., J. Appl. Phys. 70, 2104 (1991).CrossRefGoogle Scholar
10Marra, W. C., Eisenberger, P., and Cho, A. Y., J. Appl. Phys. 50, 6927 (1979).CrossRefGoogle Scholar
11Brennan, S., Surf. Sci. 152/153, 1 (1985).CrossRefGoogle Scholar
12Segmüller, A., Thin Solid Films 154, 33 (1987).CrossRefGoogle Scholar
13Toney, M. F., Huang, T. C., Brennan, S., and Rek, Z., J. Mater. Res. 3, 351 (1988).CrossRefGoogle Scholar
14Fuoss, P. H., Norton, L. J., Brennan, S., and Fischer-Colbrie, A., Phys. Rev. Lett. 60, 600 (1988).CrossRefGoogle Scholar
15Fuoss, P. H. and Brennan, S., Ann. Rev. Mater. Sci. 20, 365 (1990).CrossRefGoogle Scholar
16Born, M. and Wolf, E., Principles of Optics (Pergamon, Oxford, U.K., 1980).Google Scholar
17Vineyard, G. H., Phys. Rev. B 26, 4146 (1982).CrossRefGoogle Scholar
18Fischer-Colbrie, A., Ph.D. Thesis, Stanford University (1986).Google Scholar
19Delhez, R., Keijser, Th. H. de, and Mittemeijer, E. J., Surf. Eng. 3, 331 (1987).CrossRefGoogle Scholar
20Brennan, S., Rev. Sci. Instrum. 63, 992 (1992).CrossRefGoogle Scholar
21Brennan, S. and Cowan, P. L., Rev. Sci. Instrum. 63, 850 (1992).CrossRefGoogle Scholar
22Flinn, P. A. and Waychunas, G. A., J. Vac. Sci. Technol. B 6, 1749 (1988).CrossRefGoogle Scholar
23Venkatraman, R., Davies, P. W., Flinn, P. A., Fraser, D. B., Nix, W. D., and Bravman, J. C., J. Electron. Mater. 19, 1231 (1990).CrossRefGoogle Scholar
24Noyan, I. C. and Cohen, J. B., Residual Stress: Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987).CrossRefGoogle Scholar
25American Institute of Physics Handbook, Chap. 4f, edited by Gray, D. E. (McGraw-Hill, New York, 1963).Google Scholar
26Noyan, I. C. and Goldsmith, C. C., Adv. X-ray Anal. 33, 137 (1990).Google Scholar
27Korhonen, M. A., Paszkiet, C. A., Black, R. D., and Li, C-Y., Scripta Metall. 24, 2297 (1990).CrossRefGoogle Scholar
28Sauter, A. I., Ph.D. Thesis, Stanford University (1988).Google Scholar
29Kuan, T. S. and Murakami, M., Metall. Trans. A 13A, 383 (1982).CrossRefGoogle Scholar
30Chaudhari, P., Philos. Mag. 39, 507 (1979).CrossRefGoogle Scholar
31Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).Google Scholar
32Warren, B. E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1969).Google Scholar
33Venkatraman, R. and Bravman, J. C., J. Mater. Res. 7, 2040 (1992).CrossRefGoogle Scholar
34Dieter, G. E., Mechanical Metallurgy (McGraw-Hill, New York, 1986).Google Scholar