Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T03:41:33.175Z Has data issue: false hasContentIssue false

Elastic Recovery Measurements Performed by Atomic Force Microscopy and Standard Nanoindentation on a Co(10.1) Monocrystal

Published online by Cambridge University Press:  31 January 2011

J. C. Arnault*
Affiliation:
Groupe Surfaces-Interfaces, Institut de Physique et Chimie de Strasbourg, IPCMS-GSI, UMR 7504, Bat 69, 23, rue du Loess, 67037 STRASBOURG France
A. Mosser
Affiliation:
Groupe Surfaces-Interfaces, Institut de Physique et Chimie de Strasbourg, IPCMS-GSI, UMR 7504, Bat 69, 23, rue du Loess, 67037 STRASBOURG France
M. Zamfirescu
Affiliation:
LASMEA-UMR 6602 du CNRS, Avenue des Landais, 63177 AUBIERE Cedex, France
H. Pelletier
Affiliation:
Laboratoire d'Ingénierie des Surfaces de Strasbourg, ENSAIS, 24, bld de la Victoire, 67084 Strasbourg Cedex, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Atomic force microscopy (AFM) nanoindentation experiments were performed on a Co(10.1) monocrystal. Using AFM line scans, we deduced the elastic recovery, which is an intrinsic parameter of the studied material. The comparison of these elastic recovery values with those calculated by standard nanoindentation shows a fair agreement for forces higher than 400 μN with an important discrepancy for lower forces. This difference is attributed to tip shape effects and to the AFM cantilever elastic deformation. Furthermore, the material hardness was measured from AFM images of the imprint by considering the lateral dimension L. In this case, the obtained values are practically independent from the applied load. Moreover, a simple model based on geometrical considerations is proposed to correct hardness values calculated from the residual depth.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carpick, R.W. and Salmeron, M., Chem. Rev. 97, 1163 (1997).CrossRefGoogle Scholar
2.Burnham, N.A., Kulik, A.J., and Gremaud, G., in Procedures in Scanning Probe Microscopy, edited by Colton, R.J. (Wiley, New York, 1997).Google Scholar
3.Bushan, B., Micro/Nanotribology and its applications (Kluwer Academic, Dordrecht, Germany, 1997).CrossRefGoogle Scholar
4.Tromas, C., Girard, J.C., Audurier, V., and Woirgard, J., J. Mat. Sci. 34, 5337 (1999).CrossRefGoogle Scholar
5.Sangwal, K., Gorostiza, P., and Sanz, F., Surf.Sci. 442, 161 (1999).CrossRefGoogle Scholar
6.Lilleodden, E.T., Bonin, W., Nelson, J., Wyrobek, J.T., and Gerberich, W.W., J. Mater. Res. 10, 2162 (1995).CrossRefGoogle Scholar
7.Morse, K., Weihs, T.P., Hamza, A.V., Balooch, M., Jiang, Z., and Bogy, D.B., J. Tribology 119, 26 (1997).CrossRefGoogle Scholar
8.Bhushan, B. and Koinkar, V.N., Appl. Phys. Lett. 64, 1653 (1994).CrossRefGoogle Scholar
9.Meyer, E., Overney, R., Brodbeck, D., Howald, L., Lüthi, R., Frommer, J., and Güntherodt, H.J., Phys. Rev. Lett. 69, 1777 (1992).CrossRefGoogle Scholar
10.Bluhm, H., Schwarz, U.D., Meyer, K.P., and Wiesendanger, R., Appl. Phys. A. 61, 525 (1995).CrossRefGoogle Scholar
11.Landman, U., Luedtke, W.D., Burnham, N.A., and Colton, R.J., Science 248, 454 (1990).CrossRefGoogle Scholar
12.Burnham, N.A., and Colton, R.J., J. Vac. Sci. Technol. A 7, 2906 (1989).CrossRefGoogle Scholar
13.Tsukamoto, Y., Yamaguchi, H., and Yanagisawa, M., Thin Solid Films 154, 171 (1987).CrossRefGoogle Scholar
14.Baker, S.P., Thin Solid Films 308–309, 289 (1997).CrossRefGoogle Scholar
15.Kulkarni, A.V. and Bushan, B., Thin Solid Films 290, 206 (1996).CrossRefGoogle Scholar
16.Petzold, M., Landgraf, J., Fütting, M., and Olaf, J.M., Thin Solid Films 264, 153 (1995).CrossRefGoogle Scholar
17.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
18.Pelletier, H., Ph.D. Thesis, University Louis Pasteur, Strasbourg, France (2001).Google Scholar
19.Pharr, G.M., Oliver, W.C., and Frontzen, F.R., J. Mater. Res. 1, 613 (1986).Google Scholar
20.Pollock, H.M., Maugis, D., and Barquins, M., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1986), pp. 4771.Google Scholar
21.Tabor, D., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1986), pp. 129159.Google Scholar
22.Pethica, J.B., Hutchings, R., and Oliver, W.C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
23.Loubet, J.L., Georges, J.M., and Meille, G., edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1986), pp. 7289.Google Scholar
24.Pelletier, H., Arnault, J.C., Mille, P., and Cornet, A., 7 ème journée de la matière condensée, (French Physics Society, Poitiers, France, 2001).Google Scholar
25.Doerner, M.F., Gardner, D.S., and Nix, W.D., J. Mater. Res. 1, 845 (1986).CrossRefGoogle Scholar
26.Lockett, F.J., J. Mech, Phys. Solids 11, 345 (1963).CrossRefGoogle Scholar
27.Bell, T.J., Field, J.S., and Swain, M.V., Thin Solid Films 230, 289 (1992).CrossRefGoogle Scholar