Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T13:10:12.397Z Has data issue: false hasContentIssue false

Elastic properties of Zr-based bulk metallic glasses studied by resonant ultrasound spectroscopy

Published online by Cambridge University Press:  03 March 2011

Zhiying Zhang
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
Veerle Keppens*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
Peter K. Liaw
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
Yoshihiko Yokoyama
Affiliation:
Institute for Material Research, Tohoku University, Sendai City 980-8577, Japan
Akihisa Inoue
Affiliation:
Institute for Material Research, Tohoku University, Sendai City 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report measurements of the elastic properties of Zr-based bulk metallic glasses, Zr52.5Cu17.9Ni14.6Al10Ti5, Zr50Cu30Ni10Al10, and Zr50Cu40Al10 between 5 K and 300 K. Both the shear and longitudinal modulus have been measured as a function of temperature, allowing accurate determination of the Poisson’s ratio and the related ratio of bulk modulus to shear modulus, K/G. These data make it possible to assess the influence of the alloy’s composition on the mechanical properties and enable an evaluation of the correlation between the elastic moduli and the ductility of the alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).Google Scholar
2Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
3Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).Google Scholar
4Novikov, V.N. and Sokolov, A.P.: Poisson’s ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004).Google Scholar
5Battezzati, L.: Is there a link between fragility and elastic properties of metallic glasses. Mater. Trans., JIM 46, 2915 (2005).Google Scholar
6Inoue, A., Zhang, T., and Masumoto, T.: Zr-Al-Ti amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans., JIM 31, 177 (1990).Google Scholar
7Zhang, T., Inoue, A., and Masumoto, T.: Amorphous Zr-Al-TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100K. Mater. Trans., JIM 31, 1005 (1991).CrossRefGoogle Scholar
8Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
9Yokoyama, Y.: Ductility improvement of Zr–Cu–Ni–Al glassy alloy. J. Non-Cryst. Solids 316, 104 (2003).Google Scholar
10Liu, C.T., Heatherly, L., Easton, D.S., Carmicheal, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., and Inoue, A.: Test environments and mechanical properties of Zr-based bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 (1998).Google Scholar
11Gu, X., Jiao, T., Kecskes, L.J., Woodman, R.H., Fan, C., Ramesh, K.T., and Hufnagel, T.C.: Crystallization and mechanical behavior of (Hf, Zr)-Ti-Cu-Ni-Al metallic glasses. J. Non-Cryst. Solids 317, 112 (2003).Google Scholar
12Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Freels, M., Yokoyama, Y., Benson, M.L., Green, B.A., Saleh, T.A., McDaniels, R.L., Steward, R.V., Buchanan, R.A., Liu, C.T., and Brooks, C.R.: Fatigue behavior and fracture morphology of Zr50Al10Cu40 and Zr50Al10Cu30Ni10 bulk-metallic glasses. Intermetallics 12, 1219 (2004).Google Scholar
13Yokoyama, Y., Fukaura, K., and Inoue, A.: Cast structure and mechanical properties of Zr–Cu–Ni–Al bulk glassy alloys. Intermetallics 10, 1113 (2002).Google Scholar
14Peter, W.H., Liaw, P.K., Buchanan, R.A., Liu, C.T., Brooks, C.R., Horton, J.A. Jr., Carmicheal, C.A. Jr., and Wright, J.L.: Fatigue behavior of Zr52.5Al10Ti5Cu17.9Ni14.6 bulk metallic glass. Intermetallics 10, 1125 (2002).Google Scholar
15Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Yokoyama, Y., Benson, M.L., Green, B.A., Kirkham, M.J., White, S.A., Saleh, T.A., McDaniels, R.L., Steward, R.V., Buchanan, R.A., Liu, C.T., and Brooks, C.R.: Fatigue behavior of bulk metallic glasses. Intermetallics 12, 885 (2004).Google Scholar
16Migliori, A. and Sarrao, J.L.: Resonant Ultrasound Spectroscopy—Applications to Physics, Materials Measurements and Nondestructive Evaluation (Wiley, New York, 1997).Google Scholar
17Varshni, Y.P.: Temperature dependence of the elastic constants. Phys. Rev. B 2, 3952 (1970).Google Scholar
18Zhang, Z., Wang, R.J., Xia, L., Wei, B.C., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Elastic behaviour and microstructural characteristics of Nd60Al10Fe20Co10 bulk metallic glass investigated by ultrasonic measurement under pressure. J. Phys. Condens. Mater. 15, 4503 (2003).Google Scholar
19Zhang, B., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Properties of Ce-based bulk metallic glass-forming alloys. Phys. Rev. B 70, 224208 (2004).CrossRefGoogle Scholar
20Wang, W.H.: Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006).CrossRefGoogle Scholar
21Zhang, Y. and Greer, A.L.: Correlations for predicting plasticity or brittleness of metallic glasses. Proceedings of ISMANAM 2005 (Paris, 4-7 July 2005).Google Scholar
22Gu, X.J., McDermott, A.G., Poon, S.J., and Shiflet, G.J.: Critical Poisson’s ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006).Google Scholar
24Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).CrossRefGoogle Scholar