Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T16:21:52.688Z Has data issue: false hasContentIssue false

Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging

Published online by Cambridge University Press:  03 March 2011

G. Ghosh*
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2225 N. Campus Drive, Evanston, Illinois 60208-3108
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

Many intermetallics, such as Ag3Sn, AuSn4, Cu3Sn, Cu6Sn5 (η and η`), Ni3Sn4, and γ–Cu5Zn8 are present in modern solder interconnects as a result of solder chemistry and/or due to the interfacial reaction between solder and metallization scheme. Coarse-grained, single-phase intermetallics are produced by conventional casting followed by annealing for long time. Ambient temperature isotropic elastic moduli (bulk, Young’s, shear, and Poisson’s ratio) and selected plastic properties (hardness and indentation fracture toughness) of these intermetallics are presented. The isotropic elastic moduli of these intermetallics are determined by the pulse-echo technique. The measured bulk, Young’s and shear moduli lie in the range of 6.3 to 11.4 × 1010 N/m2, 7.1 to 12.3 × 1010 N/m2 and 2.7 to 4.5 × 1010 N/m2, respectively. The hardness and fracture toughness are determined by an indentation method. The loads used for indentation experiments were: 100–10,000 g for Ag3Sn and γ–Cu5Zn8, 10–50 g for AuSn4, 200–1000 g for Cu3Sn, 50–100 g for Cu6Sn5, and 100–200 g for Ni3Sn4. The measured Vickers hardness lies in the range of 50 to 470 Kg/mm2, and the measured indentation fracture toughness lies in the range of 2.5 to 5.7 MPa m1/2. Due to coarse grain size of the specimens, the indentation cracks were contained within one grain. In Cu3Sn, Cu6Sn5 (η and η`) and Ni3Sn4 intermetallics, the indentation cracks were found to be nearly straight and run along the indent diagonal. However, the cracks in AuSn4 showed significant zig-zag and branching phenomena, and they seemed to propagate along particular cleavage plane(s). The presence of slip bands are also observed in AuSn4, Ag3Sn, Cu3Sn, γ-Cu5Zn8, and Ni3Sn4. In the case of Ag3Sn and γ–Cu5Zn8, indentation cracks cannot be induced by applying loads up to 10 kg. Rather, extensive plastic deformation occurs resulting in the formation of a large number of shear/kink bands, and possibly twins, that spread across several grains. At a load of 5000 g or higher, Ag3Sn exhibits grain boundary decohesion near the indents. Among the intermetallics studied, Ag3Sn is shown to be the most ductile.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tu, K.N. and Zeng, K., Mater. Sci. Eng. R34, 1 (2001).CrossRefGoogle Scholar
2Puttlitz, K., IEEE Trans. CHMT 13, 647 (1990).Google Scholar
3Banerji, K. and Darveaux, R. in First Int. Conf. Microstructure and Mechanical Properties of Aging Materials, edited by Liaw, P.K., Viswanathan, R., Murty, K.L., Simonen, E.P., and Frear, D. (TMS, Warrendale, PA, 1992), pp. 431442.Google Scholar
4Frear, D.R. and Vianco, P.T., Metall. Trans. A 25A, 1509 (1994).CrossRefGoogle Scholar
5Yao, D. and Shang, J.K., Metall. Mater. Trans. A 26A, 2677 (1995).CrossRefGoogle Scholar
6Shang, J.K. and Yao, D., J. Electron. Packaging 118, 170 (1996).CrossRefGoogle Scholar
7Mei, Z., Callery, P., Fisher, D., Hua, F. and Glazer, J., Adv. Electron. Packaging 2, 1543 (1997).Google Scholar
8Mei, Z., Kaufmann, M., Eslambolchi, A. and Johnson, P. in Proc. 48th ElecComponents and Technology Conference (IEEE, Piscataway, NJ, 1998), pp. 952961.Google Scholar
9Moon, K.W., Boettinger, W.J., Kattner, U.R., Biancaniello, F.S. and Handwerker, C.A, , J. Electron. Mater. 29,1122 (2000).CrossRefGoogle Scholar
10Lewis, D., Allen, S., Notis, M. and Scotch, A., J. Electronic Mater. 31, 161 (2002).CrossRefGoogle Scholar
11Guo, F., Choi, S., Lucas, J.P. and Subramanian, K.N., Solder. Surf. Mount Technol. 13, 7 (2001).CrossRefGoogle Scholar
12Guo, F., Lee, J.G., Lucas, J.P., Subramanian, K.N. and Bieler, T.R., J. Electron. Mater. 30, 1222 (2001).CrossRefGoogle Scholar
13Jiang, N., Clum, J.A., Chromik, R.R. and Cotts, E.J., Scripta Mater. 37, 1851 (1997).CrossRefGoogle Scholar
14Fields, R.J., III, S.R. Low, Lucey, G.K. and Jr., in The Metal Science of Joining, edited by Cieslak, M.J., Perepezko, J.H., Kang, S., and Glicksman, M.E. (TMS, Warrendale, PA, 1992), pp. 165173.Google Scholar
15Ghosh, G. and Fine, M.E. in Proc. Microscopy and Microanalysis ’97 , edited by Bailey, G.W., Dimlich, R.V.W., Alexander, K.B., McCarthy, J.T., and Pretlow, T.P. (Springer, 3, New York, 1997), supplement 2, pp. 715716 .Google Scholar
16Yoon, S.W., Soh, J.R., Lee, H.M. and Lee, B.J., Acta Mater. 45, 951 (1997).CrossRefGoogle Scholar
17Lin, K.L. and Hsu, H.M., J. Electron. Mater. 30, 1068 (2001).CrossRefGoogle Scholar
18Green, R.E. Jr. in Nondestructive Testing Handbook: Ultrasonic Testing, edited by McIntire, P. (American Society for Nondestructive Testing, West Conshohocken, PA, 7, 1991), pp. 122.Google Scholar
19Henneke, E.II. in Nondestructive Testing Handbook: Ultrasonic Testing, edited by McIntire, P. (American Society for Nondestructive Testing, West Conshohocken, PA, 7, 1991), pp. 3364.Google Scholar
20Levy, M., Baas, H.E. and Stern, R.R., Handbook of Elastic Properties of Solids, Liquids and Gases 2, (Academic Press, San Diego, CA, 2001).Google Scholar
21Fairhurst, C.W. and Cohen, J.B., Acta Crystallogr. Sec B 28B, 371 (1972).CrossRefGoogle Scholar
22Kubiak, R. and Wolcyrz, M., J. Less-Common Met. 97, 265 (1984).CrossRefGoogle Scholar
23Burkhardt, W. and Schubert, K., Z. Metallkde. 50, 442 (1959).Google Scholar
24Watanabe, Y., Fujinaga, Y. and Iwasaki, H., Acta Crystallogr. Sec B 39B,306 (1983).CrossRefGoogle Scholar
25Lidin, S. and Larsson, A-K., J. Solid State Chem. 118, 313 (1995).CrossRefGoogle Scholar
26Jeitschko, W. and Jaborg, B., Acta Crystallogr. Sec B 38B, 598 (1982).CrossRefGoogle Scholar
27Brandon, J.K., Brisard, R.Y., Chieh, P.C., McMillan, R.K. and Pearson, W.B., Acta Crystallogr. Sec B 30B, 1412 (1974).CrossRefGoogle Scholar
28Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
29Subrahmanyan, B., Trans. Jpn. Inst. Met. 130, 93 (1972).CrossRefGoogle Scholar
30Chromik, R.R., Vinci, R.P., Allen, S.L. and Notis, M.R., J. Mater. Res. 18, 2251 (2003).CrossRefGoogle Scholar
31Cabarat, R., Guillet, L. and LeRoux, R., J. Inst. Met. 75, 391 (1975).Google Scholar
32Ostrovskaya, L.M., Rodin, V.N. and Kuznetsov, A.I., , Sov. J. of Non-Ferrous Met. (TSVETNYE METALLY) 26, 90 (1985).Google Scholar
33Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (The MIT Press, Cambridge, MA, 1971).Google Scholar
34Smithells Metals Reference Book , 7th ed., edited by Brandes, E.A. and Brook, G.B. (Butterworth-Heinemann,Oxford, U.K., 1990), p. 115.Google Scholar
35Kang, J.S., Gagliano, R.A., Ghosh, G. and Fine, M.E., J. Electronic Mater. 31, 1238 (2002).CrossRefGoogle Scholar
36Romig, A.D.Jr., Chang, Y.A., Stephens, J.J., Frear, D.R., Marcotte, V. and Lea, C. in Solder Mechanics: A State of the Art Assessment, edited by Frear, D.R., Jones, W.B., and Kinsman, K.R., (TMS, Warrendale, PA, 1991), pp. 29104.Google Scholar
37 J. Hoyt: Navy Weapons Center Technical Paper, No. 6789, p. 409 (1987).Google Scholar
38Balakrishnan, B., Chum, C.C., Li, M., Chen, Z. and Cahyadi, T., J. Electron. Mater. 32, 166 (2003).CrossRefGoogle Scholar
39Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M. and Kelley, K.K., Selected Values of the Thermodynamic Properties of Binary Alloys (American Society of Metals, Metals Park, OH, 1973).Google Scholar
40Cahn, R.W., Acta Metall. 1, 49 (1953).CrossRefGoogle Scholar
41Gupte, S.S. and Desai, C.F., Cryst. Res. Technol. 34, 1329 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
42Ponton, C.B. and Rawlings, R., Mater. Sci. Technol. 5 856, 961 (1989).Google Scholar
43Niihara, K., Morena, R. and Hasselman, D.P.H., J. Mater. Sci. Lett. 1, 13 (1982).CrossRefGoogle Scholar
44Logson, W.A., Liaw, P.K. and Burke, M.A., Eng. Fracture Mech. 36, 183 (1990).CrossRefGoogle Scholar
45Pratt, R.E. and Quesnel, D.J. in The Metal Science of Joining , edited by Cieslak, M.J., Perepezko, J.H., Kang, S., and Glicksman, M.E. (TMS, Warrendale, PA, 1992), pp. 201210.Google Scholar
46Gangulee, A., Das, G.C. and Bever, M.B., Metall. Trans. 4, 2063 (1973).CrossRefGoogle Scholar
47Pugh, S.F., Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
48Speich, G.R., Schwoeble, A.J. and Leslie, W.C., Metall. Trans. 3, 2031 (1972).CrossRefGoogle Scholar
49Park, J.Y., Yang, C.W., Ha, J.S., Kim, C-U., Kwon, E.J., Jung, S.B. and Kang, C.S., J. Electron. Mater. 30, 1165 (2001).CrossRefGoogle Scholar
50Ghosh, G., Acta Mater. 49, 2609 (2001).CrossRefGoogle Scholar
51Zribi, A., Clark, A, Zavalij, L., Borgensen, P. and Cotts, E.J., J. Electron. Mater. 30, 1157 (2001).CrossRefGoogle Scholar
52Lin, C-H., Chen, S-W. and Wang, C-H., J. Electron. Mater. 31, 907 (2002).CrossRefGoogle Scholar
53Ghosh, G., J. Electron. Mater. 33, 229 (2004).CrossRefGoogle Scholar