Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T23:00:50.188Z Has data issue: false hasContentIssue false

Efficiency potential and recent activities of high-efficiency solar cells

Published online by Cambridge University Press:  22 August 2017

Masafumi Yamaguchi*
Affiliation:
Research Center for Smart Energy Technology, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
Hiroyuki Yamada
Affiliation:
New Energy Technology Department, New Energy and Industrial Technology Development Organization, Kawasaki 212-8554, Japan
Yasuhiro Katsumata
Affiliation:
Department of Innovation Research, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
Kan-Hua Lee
Affiliation:
Research Center for Smart Energy Technology, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
Kenji Araki
Affiliation:
Research Center for Smart Energy Technology, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
Nobuaki Kojima
Affiliation:
Research Center for Smart Energy Technology, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The present status of R&D for various types of solar cells is presented by overviewing research and development projects for solar cells in Japan as the PV R&D Project Leader of the New Energy and Industrial Technology Development Organization (NEDO) and the Japan Science and Technology Agency (JST). Developments of high-efficiency solar cells such as 44.4% (under concentration) and 37.9% (under 1-sun) InGaP/GaAs/InGaAs 3-junction solar cells by Sharp, 26.6% crystalline Si heterojunction back-contact (HBC) solar cells by Kaneka, 22.3% CIGS solar cells by Solar Frontier have been demonstrated under the NEDO PV R&D Project. 15.0% efficiency has also been attained with 1 cm2 perovskite solar cell by NIMS under the JST Project. This article also presents analytical results for efficiency potential of high-efficiency solar cells based on external radiative efficiency (ERE), open-circuit voltage loss and fill factor loss. Crystalline Si solar cells, GaAs, III–V compound 3-junction and 5-junction, CIGSe, and CdTe solar cells have efficiency potential of 28.5%, 29.7%, 42%, 43%, 26.5%, and 26.5% under 1-sun condition, respectively, by improvements in ERE.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sam Zhang

References

REFERENCES

WBGU (German Advisory Council on Global Change): World in Transition—Towards Sustainable Energy Systems (Earthsan, London, 2003). ISBN 1-85383-882-9, http://www.wbgu.de/.Google Scholar
Kurokawa, K., Kawasaki, N., and Ito, M.: Particularity of PV aggregations incorporating with the power grids-development of a power router. In Proceedings the 34th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2009); p. 729.Google Scholar
Nakamura, J., Asano, N., Hieda, T., Okamoto, C., Ohnishi, T., Kobayashi, M., Tadokoro, H., Suganuma, R., Matsumoto, Y., Katayama, H., Higashi, K., Kamikawa, T., Kimoto, K., Harada, M., Sakai, T., Shigeta, H., Kuniyoshi, T., Tsujino, K., Zou, L., Koide, N., and Nakamura, K.: Development of heterojunction back contact Si solar cells. In Proceedings 40th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2014); p. 283.Google Scholar
Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E., and Okamoto, S.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433 (2014).CrossRefGoogle Scholar
Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanemitsu, M., Uzu, H., and Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 21, 17032 (2017).CrossRefGoogle Scholar
Nakamura, M., Yoneyama, N., Horiguchi, K., Iwata, Y., Yamaguchi, K., Sugimot, H., and Kato, T.: Recent R&D progress in solar Frontier’s small-sized Cu(InGa)(SeS)2 solar cells. In Proceedings 40th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2014); p. 0107.Google Scholar
Sai, H., Matsui, T., Koida, T., Matsubara, K., Kondo, M., Sugiyama, S., Katayama, H., Takeuchi, Y., and Yoshida, I.: Triple-junction thin-film silicon solar cell on periodically textured substrate with a stabilized efficiency of 13.6%. Appl. Phys. Lett. 106, 213902 (2015).CrossRefGoogle Scholar
Yamaguchi, M. and Luque, A.: Recent results of Europe-Japan collaborative research on concentrator photovoltaics. Energy Procedia 33, 173 (2013).CrossRefGoogle Scholar
Takamoto, T., Agui, T., Sasaki, K., and Nakaido, K.: World-record efficiency III–V compound multi-junction solar cells. In Technical Digest of the 6th World Conference on Photovoltaic Solar Energy Conversion (2014); p. 1401.Google Scholar
Yamaguchi, M., Takamoto, T., Araki, K., and Kojima, N.: Recent results for concentrator photovoltaics in Japan. Jpn. J. Appl. Phys. 55, 04EA05 (2016).CrossRefGoogle Scholar
Yamaguchi, M.: Creative clean energy generation by using solar energy. Future Mater. 11(3), 52 (2011). (in Japanese).Google Scholar
Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M., and Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).CrossRefGoogle ScholarPubMed
Ishizaki, K., Zoysa, M.D., Tanaka, Y., Umeda, T., Kawamoto, Y., and Noda, S.: Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures. Opt. Express 23, A1040 (2015).CrossRefGoogle ScholarPubMed
Sai, H., Umishio, H., Matsui, T., Nunomura, S., Takato, H., Kawatsu, T., and Matsubara, K.: Potential of a-Si:H/c-Si heterojunction solar cells with very thin wafers. Presented at the RCPV (Research Center for Photovoltaics, AIST (National Institute of Advanced Industrial Science and Technology)) Symposium 2017, 0614_T04, Tsukuba, Japan, June 13, 14, 2017.Google Scholar
Ahrenkiel, R.K.: Minority-Carrier Lifetime in III–V Semiconductors. In Semiconductors and Semimetals, Vol. 39, Ahrenkiel, R.K. and Lundstrom, M.S., eds. (Academic Press, Boston); p. 58.CrossRefGoogle Scholar
Rau, U.: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).CrossRefGoogle Scholar
Green, M.A.: Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovoltaics 20, 472 (2012).CrossRefGoogle Scholar
Yao, J., Kirchartz, T., Vezie, M.S., Faist, M.A., Gong, W., He, Z., Wu, H., Troughion, J., Watson, T., Bryant, D., and Nelson, J.: Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., and Warta, W.: Solar cell efficiency tables (version 36). Prog. Photovoltaics 18, 346 (2010).CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., and Warta, W.: Solar cell efficiency tables (version 37). Prog. Photovoltaics 19, 84 (2011).CrossRefGoogle Scholar
Geisz, J.F., Steiner, M.A., Garcia, I., Kurtz, S.R., and Friedman, D.J.: Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cellls. Appl. Phys. Lett. 103, 041118 (2013).CrossRefGoogle Scholar
Green, M.A.: Solar Cells (UNSW, Kensington, 1998).Google Scholar
Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., and Maruyama, E.: 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96 (2014).CrossRefGoogle Scholar
Zhao, J., Wang, A., Green, M.A., and Ferrazza, F.: Novel 19.8% efficient “honeycomb” textures multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991 (1998).CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 48). Prog. Photovoltaics 24, 905 (2016).CrossRefGoogle Scholar
Kayes, B.M., Nie, H., Twist, R., Sproytee, S.G., Reinhardt, F., Kizilyalli, I.C., and Higashi, G.S.: 27.6% conversion efficiency, a new record for single-junction solar cells under 1-sun illumination. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2011); p. 4.Google Scholar
Yamaguchi, M., Lee, K-H., Araki, K., Kojima, N., and Ohshita, Y.: Potential and activities of III–V/Si tandem solar cells. ECS J. Solid State Sci. Technol. 5, Q68 (2016).CrossRefGoogle Scholar
Ringell, S.A., Carlinl, J.A., Andre, C.L., Hudait, M.K., Gonzalez, M., Wilt, D.M., Clark, E.B., Jenkins, P., Scheiman, D., Allerman, A., Fitzgerald, E.A., and Leitz, C.W.: Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers. Prog. Photovoltaics 10, 417 (2002).CrossRefGoogle Scholar
Yamaguchi, M., Ohmachi, Y., Oh’hara, T., Kadota, Y., Imaizumi, M., and Matsuda, S.: GaAs solar cells grown on Si substrates for space use. Prog. Photovoltaics 9, 191 (2001).CrossRefGoogle Scholar
Yamaguchi, M. and Amano, C.: Efficiency calculations of thin-film GaAs solar cells on Si substrates. J. Appl. Phys. 58, 3601 (1985).CrossRefGoogle Scholar
Sasaki, K., Agui, T., Naaido, K., Takahasi, N., Onitsuka, R., and Takamoto, T.: Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. In Proceedings of the 9th International Conference on Concentrating Photovoltaics Systems (AIP, 2013); p. 22.Google Scholar
Chiu, P.T., Law, D.L., Woo, R.L., Singer, S., Bhusan, D., Hong, W.D., Zakaria, A., Boisvert, J.C., Mestropian, S., King, R.R., and Karam, N.H.: 35.8% space and 38.8% terrestrial 5J direct bonded cells. In Proceedings of the 40th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2014); p. 11.Google Scholar
Kamada, R., Yagioka, T., Adachi, S., Handa, A., Tai, K.F., Kato, T., and Sugimoto, H.: New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%. In Proceedings of the 43rd IEEE Photovoltaic Specialists Conference (IEEE, New York, 2016); p. 1287.Google Scholar
Hiroi, H., Iwata, Y., Adachi, S., Sakai, N., Sugimoto, H., and Yamada, A.: New world-record efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE J. Photovolt. 6, 260 (2016).CrossRefGoogle Scholar
Hiroi, H., Sakai, N., Kato, T., and Sugimoto, H.: Impact of buffer layer of kesterite solar cells. In Proceedings of the 42nd IEEE Photovoltaic Specialists Conference (IEEE, New York, 2015); p. 3625.Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovoltaics 25, 3 (2017).CrossRefGoogle Scholar
Yamaguch, M., Lee, K-H., Araki, K., Kojima, N., Yamada, H., and Katsumata, Y.: Analysis for efficiency potential of high-efficiency and next generation solar cells. Prog. Photovoltaics (submitted).Google Scholar
Swanson, R.: Approaching the 29% limit efficiency of silicon solar cells. In Proceedings of the 20th European Photovoltaic Solar Energy Conference (WIP, Munich, 2005); p. 584.Google Scholar
Dziewior, J. and Schmid, W.: Auger coefficient for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346 (1977).CrossRefGoogle Scholar
Higasa, M., Nagai, Y., Nakagawa, S., and Kashima, K.: Effect of low carbon concentration on bulk carrier lifetime in MCZ silicon crystal. In Abstract of the 73rd Annual Meeting of the Japan Society of Applied Physics 20a-A20-3 (2014).Google Scholar
Arafune, K., Sasaki, T., Wakabayashi, F., Terada, Y., Ohshita, Y., and Yamaguchi, M.: Study on defects and impurities in cast-grown polycrystalline silicon substrates for solar cells. Phys. B 376–377, 236 (2006).CrossRefGoogle Scholar
Casey, H.C. Jr. and Beehler, E.: Evidence for low surface recombination velocity on n-type InP. Appl. Phys. Lett. 30, 247 (1977).CrossRefGoogle Scholar
Van Vechten, J.A. and Wagner, J.F.: Asymmetry of anion and cation vacancy migration enthalpies in III–V compound semiconductors: Role of the kinetic energy. Phys. Rev. B 32, 5259 (1985).CrossRefGoogle Scholar
Wagner, J.F. and Van Vechten, J.A.: Atomic model for the EL2 defect in GaAs. Phys. Rev. B 35, 2330 (1987).CrossRefGoogle Scholar
Yamaguchi, M. and Ando, K.: Mechanism for radiation resistance of InP solar cells. J. Appl. Phys. 63, 5555 (1988).CrossRefGoogle Scholar
Blakers, A.W., Wang, A., Milne, A.M., Zhao, J., and Green, M.A.: 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363 (1989).CrossRefGoogle Scholar
Swanson, R., Beckwith, S., Crane, R., Eaides, W., Kwark, Y., Sinon, R., and Swiiwiun, S.: Point-contact silicon solar cells. IEEE Trans. Electron Devices 661 (1984).Google Scholar
Neuse, C.J.: III–V alloys for optoelectronic applications. J. Electron. Mater. 6, 253 (1977).CrossRefGoogle Scholar
Yamaguchi, M.: Fundamentals and R&D status of III–V comound solar cells and materials. Phys. Status Solidi C 12, 489 (2015).CrossRefGoogle Scholar
Miller, O.W., Yablonovitch, E., and Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303 (2012).CrossRefGoogle Scholar
Supplementary material: File

Yamaguchi supplementary material 1

Supplementary Figure

Download Yamaguchi supplementary material 1(File)
File 548.4 KB
Supplementary material: File

Yamaguchi supplementary material 2

Supplementary Figure

Download Yamaguchi supplementary material 2(File)
File 271.6 KB
Supplementary material: File

Yamaguchi supplementary material 3

Supplementary Figure

Download Yamaguchi supplementary material 3(File)
File 303.7 KB
Supplementary material: File

Yamaguchi supplementary material 4

Yamaguchi supplementary material

Download Yamaguchi supplementary material 4(File)
File 12.8 KB
Supplementary material: File

Yamaguchi supplementary material 5

Supplementary Figure

Download Yamaguchi supplementary material 5(File)
File 409.2 KB