Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T06:25:25.449Z Has data issue: false hasContentIssue false

The effects of the atmosphere on the surface modification of alumina by pulsed-laser-irradiation

Published online by Cambridge University Press:  31 January 2011

Siqi Cao
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996–2200
A. J. Pedraza
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996–2200
L. F. Allard
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831–6056
Get access

Abstract

A near-surface thin layer is melted when alumina is pulsed-laser-irradiated in an Ar–4% H2 atmosphere or in air. A thin layer of amorphous phase forms when the substrates are irradiated in Ar–4% H2 at 1 to 1.3 J/cm2 with multiple laser pulses. Amorphous phase is also found in samples laser-irradiated in air and oxygen. After a laser pulse at an energy density of 1.6 J/cm2 or higher the melt solidifies epitaxially from the unmelted substrate with a cellular microstructure. There is a decrease in the cooling rate of the melt as the laser energy density is increased because more heat must be dissipated. The amorphous phase forms when the heat input due to the laser pulse produces a superheated melt that cools down sufficiently fast to avoid crystallization. Very small particles of aluminum in the laser-melted and subsequently solidified layer are observed only in samples laser-irradiated in an Ar–4% H2 atmosphere. In this reducing atmosphere, the alumina is possibly reduced to metallic aluminum which is mixed into the melt by the turbulence provoked by the laser pulses. The effects of these metallic particles on copper deposition when the irradiated substrates are immersed in an electroless bath are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Epifanov, A. F., Sov. Phys.-JETP 40 (5), 897 (1974).Google Scholar
2.Jones, S. C., Fischer, A. H., Braunlich, P., and Kelly, P., Phys. Rev. B 37 (2), 755 (1988).Google Scholar
3.Shen, X. A., Braunlich, P., and Jones, S. C., Phys. Rev. Lett. 62 (23), 2711 (1989).Google Scholar
4.Webb, R. L., Jensen, C., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 74 (4), 2338 (1994).Google Scholar
5.Dickinson, J. T., Langford, S. C., Jensen, L. C., Eschbach, P. A., Pederson, L. R., and Baer, D. R., J. Appl. Phys. 68, 1831 (1990).CrossRefGoogle Scholar
6.Lowndes, D. H., DeSilva, M., Godbole, M. J., Pedraza, A. J., and Geohegan, D. B., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubrowski, J. J., and D. Norton (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 191.Google Scholar
7.Webb, R. L., Jensen, C., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 74 (4), 2323 (1994).Google Scholar
8.Cao, Siqi, Pedraza, A. J., Lownes, D. H., and Allard, L. F., Appl. Phys. Lett. 65, 2940 (1994).Google Scholar
9.Cao, Siqi, unpublished results.Google Scholar
10.Pedraza, A. J., Kumar, R. A., and Lowndes, D. H., Appl. Phys. Lett. 66, 1065 (1995).Google Scholar
11.Pedraza, A. J., DeSilva, M. J., Kumar, R. A., and Lowndes, D. H., J. Appl. Phys. 77, 5176 (1995).Google Scholar
12.Shafeev, G. A., Adv. Mater. for Opt. and Elect. 2, 183 (1993).CrossRefGoogle Scholar
13.Pedraza, A. J., Godbole, M. J., DeSilva, M. J., and Lowndes, D. H., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubrowski, J. J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 203.Google Scholar
14.Lowndes, D. H., DeSilva, M. J., Godbole, M. J., Pedraza, A. J., Thundat, T., and Warmack, R. J., Appl. Phys. Lett. 64 (14), 1791 (1994).CrossRefGoogle Scholar
15.Godbole, M. J., Pedraza, A. J., Lowndes, D. H., and Thompson, J. R., Jr., J. Mater. Res. 4 1202 (1988).Google Scholar
16.Agullo-Lopez, F., Catlow, C. R. A., and Townsend, P. D., in Point Defects in Materials (Academic Press, New York, 1988).Google Scholar
17.Esrom, H., Zhang, J-Y., and Pedraza, A. J., in Photons and Low Energy Particles in Surface Processing, edited by Ashby, C. I. H., Brannon, J. H., and Pang, S. W. (Mater. Res. Soc. Symp. Proc. 236, Pittsburgh, PA, 1992), p. 383.Google Scholar
18.Pedraza, A. J., Park, J. W., Meyer, H. M., III and Braski, D. N., J. Mater. Res. 9, 2251 (1994).CrossRefGoogle Scholar
19.The Making, Shaping and Treating of Steel, McGannon, H. E. (United States Steel, Pittsburgh, PA, 1971).Google Scholar
20.Gidzten, Walter H., in Alumina as a Ceramic Material (The American Ceramic Society, Westerville, OH).Google Scholar
21.Pedraza, A. J., Park, J. and Lowndes, D. H., in Advanced Laser Processing of Materials—Fundamentals and Applications, edited by Singh, R. K., Norton, D., Narayan, J., Cheung, J., and Laude, L. D. (Mater. Res. Soc. Symp. Proc. 397, Pittsburgh, PA, 1996).Google Scholar
22.Park, J. W., Pedraza, A. J., and Allen, W. R., J. Vac. Sci. Technol. A 14 (2), 286 (1996).CrossRefGoogle Scholar