Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T21:13:02.930Z Has data issue: false hasContentIssue false

Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method

Published online by Cambridge University Press:  31 January 2011

Pengxian Lu
Affiliation:
School of Physical Engineering and Material Physics Laboratory, Zhengzhou University, Zhengzhou 450045, People's Republic of China; and College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450007, People's Republic of China
Xing Hu*
Affiliation:
School of Physical Engineering and Material Physics Laboratory, Zhengzhou University, Zhengzhou 450045, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The thermoelectric LaFe3CoSb12 nanopowders were synthesized by the hydro/solvo thermal method. The effects of different solvents were investigated by using only the potassium antimony tartrate as Sb source. Also, the effects of the different Sb sources were investigated by using only water as solvent on the morphologies of the resulting nanopowders. The results show that a mixture of nanoparticles and nanorods can be obtained in aqueous solution of cetyltrimethylammonium bromide or ethylenediamine-tetra-acetic disodium salt. In ethylenediamine only nanorods can be obtained, and in ethylene glycol only nanoparticles can be obtained. The other morphologies of the LaFe3CoSb12, such as particle-like, nest-shaped, branch-shaped, or feather-like crystalline, can be synthesized in water by selecting a suitable Sb source.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Terry, M.T. and Subramanianm, A.: Thermoelectric materials, phenomena, and applications: A bird's eye view. MRS Bull. 31, 188 (2006).Google Scholar
2Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).CrossRefGoogle ScholarPubMed
3Harman, T.C., Taylor, P.J., Walsh, M.P. and LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).CrossRefGoogle ScholarPubMed
4Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nature 17, 105 (2008).CrossRefGoogle Scholar
5Li, J., Zhu, Y.C., Du, J., Zhang, J.H. and Qian, Y.T.: Synthesis and shape evolution of bismuth selenide hollow nanospheres. Solid State Commun. 147, 36 (2008).CrossRefGoogle Scholar
6Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P. and Cao, G.S.: Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3. J. Alloys Compd. 399, 260 (2005).CrossRefGoogle Scholar
7Zhang, Y.H., Zhu, T.J., Tu, J.P. and Zhao, X.B.: Flower-like nano-structure and thermoelectric properties of hydrothermally synthesized La-containing Bi2Te3 based alloys. Mater. Chem. Phys. 103, 484 (2007).CrossRefGoogle Scholar
8Zhao, X.B., Ji, X.H., Zhang, Y.H., Zhu, T.J., Tu, J.P. and Zhang, X.B.: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005).CrossRefGoogle Scholar
9Sudip, K., Batabyal, C., Basu, A.R. and Sanyal, G.S. Das: Solvo-thermal synthesis of bismuth selenide nanotubes. Mater. Lett. 60, 2582 (2006).Google Scholar
10Malakooti, R., Cademartiri, L., Migliori, A. and Ozin, G.A.: Ultrathin Sb2S3 nanowires and nanoplatelets. J. Mater. Chem. 18, 66 (2008).CrossRefGoogle Scholar
11Tritt, T.M.: Thermoelectric materials: Holey, unholy semiconductors. Science 283, 804 (1999).CrossRefGoogle Scholar
12Keppens, V., Mandrus, D., Sales, B.C., Chakoumakos, B.C., Dai, P., Coldea, R., Maple, M.B., Gajewski, D.A., Freeman, E.J. and Bennington, S.: Localized vibrational modes in metallic solids. Nature 395, 876 (1998).CrossRefGoogle Scholar
13Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V. and Thompson, J.R.: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B: Condens. Matter 56, 15081 (1997).CrossRefGoogle Scholar
14Kuznetsov, L., Kuznetsova, L.A. and Rowe, D.M.: Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys. Condens. Matter 15, 5035 (2003).CrossRefGoogle Scholar
15Yang, J., Morelli, D.T., Meisner, G.P., Chen, W., Dyck, J.S. and Uher, C.: Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. Phys. Rev. B: Condens. Matter 67, 165207 (2003).CrossRefGoogle Scholar
16Lamberton, G.A. Jr., Bhattacharya, S., Littleton, R.T. IV, Kaeser, M.A., Tedstrom, R.H., Tritt, T.M., Yang, J. and Nolas, G.S.: High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
17Shi, X., Kong, H., Li, C.P., Uher, C., Yang, J., Salvador, J.R., Wang, H., Chen, L. and Zhang, W.: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
18Zhai, P.C., Zhao, W.Y., Li, Y., Liu, L.S., Tang, X.F., Zhang, Q.J. and Niino, M.: Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials. Appl. Phys. Lett. 89, 052111 (2006).CrossRefGoogle Scholar
19Li, H., Tang, X.F., Su, X.L. and Zhang, Q.J.: Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 92, 202114 (2008).CrossRefGoogle Scholar
20Alboni, P.N., Ji, X., He, J., Gothard, N. and Tritt, T.M.: Thermo-electric properties of La0.9CoFe3Sb12–CoSb3 skutterudite nanocomposites. J. Appl. Phys. 103, 113707 (2008).CrossRefGoogle Scholar
21Suzuki, A.: Characterization of filled skutterudite LaFeCo3Sb12thin films prepared by laser ablation. Proceedings of ICT 2001 (2001), p. 318321.Google Scholar
22Grosvenor, A.P., Cavell, R.G. and Mar, A.: X-ray photoelectron spectroscopy study of the skutterudites LaFe4Sb12, CeFe4Sb12, CoSb3, and CoP3. Phys. Rev. B: Condens. Matter 74, 125102 (2006).CrossRefGoogle Scholar
23Bertini, L., Stiewe, C., Toprak, M., Williams, S., Platzek, D., Mrotzek, A., Zhang, Y., Gatti, C., Mueller, E., Muhammed, M. and Rowe, M.: Nanostructured Co1-xNixSb3 skutterudites: Synthesis, thermoelectric properties and theoretical modeling. J. Appl. Phys. 93, 438 (2003).CrossRefGoogle Scholar
24Plieth, W.: Electrochemistry for Materials Science (Elsevier, London, 2008), p. 72.Google Scholar
25Mi, J.L., Zhao, X.B., Zhu, T.J. and Tu, J.P.: Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Mater. Lett. 62, 2363 (2008).CrossRefGoogle Scholar
26Chakoumakos, B.C., Sales, B.C., Mandrus, D. and Keppens, V.: Disparate atomic displacements in skutterudite-type LaFe3CoSb12, a model for thermoelectric behavior. Acta Crystallogr, Sect. B: Struct. Sci. 55, 341 (1999).CrossRefGoogle Scholar
27Deng, Y., Zhou, X.S., Wei, G.D., Liu, J., Nan, C.W. and Zhao, S.J.: Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J. Phys. Chem. Solids 63, 2119 (2002).CrossRefGoogle Scholar
28Zhang, J., Dai, Z.H., Bao, J.C., Zhang, N. and LópezQuintel, M. Arturo: Self-assembly of Co-based nanosheets into novel nest-shaped nanostructures: Synthesis and characterization. J. Colloid Interface Sci. 305, 3392 (2007).CrossRefGoogle ScholarPubMed
29Zhang, D.E., Ni, X.M., Zhang, X.J. and Zheng, H.G.: Synthesis and characterization of Ni–Co needle-like alloys in water-in-oil microemulsion. J. Magn. Magn. Mater. 302, 2902 (2006).CrossRefGoogle Scholar
30Carpenter, E.E., Sims, J.A., Wienmann, J.A., Zhou, W.L. and O'Connor, C.J.: Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J. Appl. Phys. 87, 56152 (2000).CrossRefGoogle Scholar
31Ni, H.L., Zhu, T.J. and Zhao, X.B.: Hydrothermally synthesized and hot-pressed Bi2(Te,Se)3 thermoelectric alloys. Physica B (Amsterdam) 364, 50 (2005).CrossRefGoogle Scholar
32Xiong, S.L., Xi, B.J., Wang, C.M., Zou, G.F., Fei, L.F., Wang, W.Z. and Qian, Y.T.: Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine's assistance. Chem. Eur. J. 13, 3076 (2007).CrossRefGoogle Scholar
33Hu, H.M., Mo, M.S., Yang, B.J., Shao, M.W., Zhang, S.Y., Li, Q.W. and Qian, Y.T.: A rational complexing-reduction route to antimony nanotubes. New J. Chem. 27, 1161 (2003).CrossRefGoogle Scholar
34Ni, H.L., Zhao, X.B., Zhu, T.J., Ji, X.H. and Tu, J.P.: Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites. J. Alloys Compd. 397, 317 (2005).CrossRefGoogle Scholar
35Yoo, B.Y., Huang, C.K., Lim, J.R., Herman, J., Ryan, M.A., Fleurial, J.P. and Myung, N.V.: Electrochemically deposited thermoelectric n-type Bi2Te3 thin films. Electrochim. Acta 50, 4371 (2005).CrossRefGoogle Scholar
36Liu, H., Wang, J.Y., Hu, X.B., Li, L.X., Gu, F., Zhao, S.R., Gu, M.Y., Boughton, R.I. and Jiang, M.H.: Preparation of filled skutterudite nanowire by a hydrothermal method. J. Alloys Compd. 334, 313 (2002).CrossRefGoogle Scholar
37Cao, Y.Q., Zhu, T.J. and Zhao, X.B.: Thermoelectric Bi2Te3 nano-tubes synthesized by low-temperature aqueous chemical method. J. Alloys Compd. 449, 109 (2008).CrossRefGoogle Scholar
38Zhu, G.Q., Liu, P., Miao, H.Y., Zhu, J.P., Bian, X.B., Liu, Y., Chen, B. and Wang, X.B.: Large-scale synthesis of ultralong Sb2S3 sub-microwires via a hydrothermal process. Mater. Res. Bull. 43, 2636 (2008).CrossRefGoogle Scholar
39Dong, L.H., Chu, Y. and Zhang, W.: A very simple and low cost route to Bi2S3 nanorods bundles and dandelion-like nanostructures. Mater. Lett. 62, 4269 (2008).CrossRefGoogle Scholar