Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T12:07:20.833Z Has data issue: false hasContentIssue false

Effects of poly(para-dioxanone-co-L-lactide) on the in vitro hydrolytic degradation behaviors of poly(L-lactide)/poly(para-dioxanone) blends

Published online by Cambridge University Press:  17 February 2015

Xulong Xie
Affiliation:
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
Wei Bai*
Affiliation:
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
Congming Tang
Affiliation:
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, People's Republic of China
Dongliang Chen
Affiliation:
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
Chengdong Xiong
Affiliation:
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Poly(L-lactide)/poly(para-dioxanone) (PLLA/PPDO) (85/15 w/w) blends with 0, 1, 3, and 5 wt% poly(para-dioxanone-co-L-lactide) (PDOLLA) as a compatibilizer were prepared by solution coprecipitation. The in vitro hydrolytic degradation (HD) of blend bars with different contents of PDOLLA was studied by immersing the bars in a phosphate buffer solution (PBS) at pH 7.49. To estimate the degradation of blend bars, the weight loss, water absorption, thermal properties, surface morphology, and mechanical properties of blend bars, as well as the pH value changes of the PBS, were studied for 8 wk of HD. By adding 1 and 3 wt% PDOLLA, the weight loss of PLLA/PPDO (85/15 w/w) blends increased from 6.4 to 6.8 and 7.4% after 8 wk of HD, 6.2 and 15.6% increment, respectively, while, the average tensile strength of PLLA/PPDO (85/15 w/w) blends for 2–8 wk of HD increased from 25.8 to 29.0 MPa and 31.0 MPa, 12.4 and 20.2% increment, respectively. Considering their good mechanical properties and HD rate, the PLLA/PPDO (85/15 w/w) blends with 1 and 3 wt% PDOLLA are potential to be used as a medical implant material.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, J., Liu, F., Yang, L., and Li, S.: Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-d,l-lactide) random copolymers with shape memory behavior. Eur. Polym. J. 46, 783 (2010).Google Scholar
Javadi, A., Srithep, Y., Pilla, S., Lee, J., Gong, S., and Turng, L.S.: Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater. Sci. Eng., C 30, 749 (2010).CrossRefGoogle Scholar
Nair, L.S. and Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762 (2007).CrossRefGoogle Scholar
Liu, H., Chen, F., Liu, B., Estep, G., and Zhang, J.: Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 43, 6058 (2010).Google Scholar
Yang, J.H., Lee, Y.D., Tsai, R.S., and Tsai, H.B.: Enzymatic degradation of poly(l-lactide)/poly(tetramethylene glycol) triblock copolymer electrospun fiber. Mater. Chem. Phys. 133, 1127 (2012).CrossRefGoogle Scholar
Wu, J.H., Yen, M.S., Kuo, M.C., and Chen, B.H.: Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites. Mater. Chem. Phys. 142, 726 (2013).Google Scholar
Rasal, R.M., Janorkar, A.V., and Hirt, D.E.: Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338 (2010).Google Scholar
Wang, S., Ma, P., Wang, R., Wang, S., Zhang, Y., and Zhang, Y.: Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polym. Degrad. Stab. 93, 1364 (2008).Google Scholar
Meng, B., Tao, J., Deng, J., Wu, Z., and Yang, M.: Toughening of polylactide with higher loading of nano-titania particles coated by poly(ε-caprolactone). Mater. Lett. 65, 729 (2011).Google Scholar
Lu, J., Qiu, Z., and Yang, W.: Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): Miscibility, crystallization, and mechanical properties. Polymer 48, 4196 (2007).CrossRefGoogle Scholar
Gramlich, W.M., Robertson, M.L., and Hillmyer, M.A.: Reactive compatibilization of poly(l-lactide) and conjugated soybean oil. Macromolecules 43, 2313 (2010).Google Scholar
Shibata, M., Teramoto, N., and Inoue, Y.: Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-l-lactate) blends. Polymer 48, 2768 (2007).Google Scholar
Arias, V., Hoglund, A., Odelius, K., and Albertsson, A.C.: Tuning the degradation profiles of poly(l-lactide)-based materials through miscibility. Biomacromolecules 15, 391 (2014).Google Scholar
Jiang, L., Wolcott, M.P., and Zhang, J.: Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7, 199 (2006).Google Scholar
Gallego, R., López-Quintana, S., Basurto, F., Núñez, K., Villarreal, N., and Merino, J.C.: Synthesis of new compatibilizers to poly(lactic acid) blends. Polym. Eng. Sci. 54, 522 (2014).Google Scholar
Bai, W., Chen, D., Zhang, Z., Li, Q., Zhang, D., and Xiong, C.: Poly(para-dioxanone)/inorganic particle composites as a novel biomaterial. J. Biomed. Mater. Res., Part B 90, 945 (2009).Google Scholar
Bai, W., Zhang, L.F., Li, Q., Chen, D.L., and Xiong, C.D.: In vitro hydrolytic degradation of poly(para-dioxanone)/poly(d,l-lactide) blends. Mater. Chem. Phys. 122, 79 (2010).CrossRefGoogle Scholar
Bai, W., Zhang, Z.P., Li, Q., Chen, D.L., Chen, H.C., Zhao, N., and Xiong, C.D.: Miscibility, morphology and thermal properties of poly(para-dioxanone)/poly(D,L-lactide) blends. Polym. Int. 58, 183 (2009).Google Scholar
Bai, W., Chen, D., Li, Q., Chen, H., Zhang, S., Huang, X., and Xiong, C.D.: In vitro hydrolytic degradation of poly(para-dioxanone) with high molecular weight. J. Polym. Res. 16, 471 (2008).Google Scholar
Xie, X., Bai, W., Chen, D., Xiong, C., and Pang, X.: Effect of poly(para-dioxanone) on the hydrolytic degradation of poly(l-lactide). J. Polym. Environ. DOI: 10.1007/s10924-014-0670-y.CrossRefGoogle Scholar
Pezzin, A.P.T., Alberda van Ekenstein, G.O.R., Zavaglia, C.A.C., Brinke, G., and Duek, E.A.R.: Poly(para-dioxanone) and poly(l-lactic acid) blends: Thermal, mechanical, and morphological properties. J. Appl. Polym. Sci. 88, 2744 (2003).Google Scholar
Pezzin, A.P.T. and Duek, E.A.R.: Miscibility and hydrolytic degradation of bioreabsorbable blends of poly(p-dioxanone) and poly(L-lactic acid) prepared by fusion. J. Appl. Polym. Sci. 101, 1899 (2006).Google Scholar
Ma, P., Cai, X., Zhang, Y., Wang, S., Dong, W., Chen, M., and Lemstra, P.J.: In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stab. 102, 145 (2014).Google Scholar
Xie, X., Bai, W., Wu, A., Chen, D., Xiong, C., Tang, C., and Pang, X.: Increasing the compatibility of poly(L-lactide)/poly(para-dioxanone) blends through the addition of poly(para-dioxanone-co-L-lactide). J. Appl. Polym. Sci. 132, 1029 (2015).Google Scholar
Zhang, L., Xiong, C., and Deng, X.: Miscibility, crystallization and morphology of poly(β-hydroxybutyrate) and poly(d,l-lactide) blends. Polymer 37, 235 (1996).Google Scholar
Wang, B., Ma, C., Xiong, Z.C., Zhou, H.W., Zhou, Q.H., and Chen, D.L.: Regulating the physical and biological performances of poly(p-dioxanone) by copolymerization with L-phenylalanine. J. Appl. Polym. Sci. 130, 2311 (2013).Google Scholar
Garlotta, D.: A literature review of poly(lactic acid). J. Polym. Environ. 9, 63 (2001).Google Scholar
Chen, S.C., Wang, X.L., Wang, Y.Z., Yang, K.K., Zhou, Z.X., and Wu, G.: In vitro degradation of biodegradable blending materials based on poly(p-dioxanone) and poly(vinyl alcohol)-graft-poly(p-dioxanone) with high molecular weights. J. Biomed. Mater. Res., Part A 80, 453 (2007).CrossRefGoogle ScholarPubMed
Zhao, H.Z., Hao, J.Y., Xiong, C.D., and Deng, X.M.: Different crystallinity of poly(d,l-lactide-co-p-dioxanone) copolymers acquired by control of chain microstructure. Chin. Chem. Lett. 20, 1506 (2009).Google Scholar
Díaz, E., Sandonis, I., Puerto, I., and Ibáñez, I.: In vitro degradation of PLLA/nHA composite scaffolds. Polym. Eng. Sci. DOI: 10.1002/pen.23806.Google Scholar
Zhou, S., Deng, X., and Yang, H.: Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: Characterization and their use as drug carriers for a controlled delivery system. Biomaterials 24, 3563 (2003).Google Scholar
Peng, H., Zhou, S., Guo, T., Li, Y., Li, X., Wang, J., and Weng, J.: In vitro degradation and release profiles for electrospun polymeric fibers containing paracetanol. Colloids Surf., B 66, 206 (2008).Google Scholar
Deng, X., Zhou, S., Li, X., Zhao, J., and Yuan, M.: In vitro degradation and release profiles for poly-dl-lactide-poly(ethylene glycol) microspheres containing human serum albumin. J. Controlled Release 71, 165 (2001).Google Scholar
Bai, Y., Luo, P., Wang, P., Bai, W., Xiong, C., and Tang, C.: Hydrolytic degradation of PPDO/PDLLA blends containing the compatibilizer PLADO. J. Polym. Environ. 21, 1016 (2013).Google Scholar
Dai, L., Li, D., and He, J.: Degradation of graft polymer and blend based on cellulose and poly(l-lactide). J. Appl. Polym. Sci. 130, 2257 (2013).Google Scholar
Sriromreun, P., Petchsuk, A., Opaprakasit, M., and Opaprakasit, P.: Standard methods for characterizations of structure and hydrolytic degradation of aliphatic/aromatic copolyesters. Polym. Degrad. Stab. 98, 169 (2013).Google Scholar
Wan, P., Yuan, C., Tan, L.L., Li, Q., and Yang, K.: Fabrication and evaluation of bioresorbable PLLA/magnesium and PLLA/magnesium fluoride hybrid composites for orthopedic implants. Compos. Sci. Technol. 98, 36 (2014).Google Scholar
Huang, Y., Zhang, C., Pan, Y., Zhou, Y., Jiang, L., and Dan, Y.: Effect of NR on the hydrolytic degradation of PLA. Polym. Degrad. Stab. 98, 943 (2013).Google Scholar
Liu, Y.S., Huang, Q.L., Kienzle, A., Muller, W.E.G., and Feng, Q.L.: In vitro degradation of porous PLLA/pearl powder composite scaffolds. Mater. Sci. Eng., C 38, 227 (2014).Google Scholar
Atkinson, J.L. and Vyazovkin, S.: Dynamic mechanical analysis and hydrolytic degradation behavior of linear and branched poly(L-lactide)s and poly(L-lactide-co-glycolide)s. Macromol. Chem. Phys. 214, 835 (2013).CrossRefGoogle Scholar
Li, Y., Li, S., Ji, L., He, B., and Gu, Z.: Studies on the degradation of poly(L-lactide-r-trimethene carbonate) copolymers. Chin. J. Polym. Sci. 31, 966 (2013).Google Scholar
Mattioli, S., Kenny, J.M., and Armentano, I.: Plasma surface modification of porous PLLA films: Analysis of surface properties and in vitro hydrolytic degradation. J. Appl. Polym. Sci. 125, E239 (2012).Google Scholar
Wanamaker, C.L., Tolman, W.B., and Hillmyer, M.A.: Hydrolytic degradation behavior of a renewable thermoplastic. Biomacromolecules 10, 443 (2009).Google Scholar
Supplementary material: File

Xie et al. supplementary material

Supplementary figures

Download Xie et al. supplementary material(File)
File 5 MB