Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T01:15:17.874Z Has data issue: false hasContentIssue false

Effects of nanostructures on the fracture strength of the interfaces in nacre

Published online by Cambridge University Press:  31 January 2011

F. Song
Affiliation:
State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Y. L. Bai
Affiliation:
State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Get access

Abstract

A strengthening mechanism arising from the mineral bridges in the organic matrix layers of nacre (mother of pearl) is presented by studying the structural and mechanical properties of the interfaces in nacre. This mechanism not only increases the average fracture strength of the organic matrix interfaces by about five times, but also effectively arrests the cracks in the organic matrix layers and causes the crack deflection in this biomaterial. The present investigation shows that the main mechanism governing the strength of the organic matrix layers of nacre relies on the mineral bridges rather than the organic matrix. This study provides a guide to the interfacial design of synthetic materials.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sarikaya, M., Liu, J., and Aksay, I.A., in Biomimetics: Design and Processing of Materials, edited by Sarikaya, M. and Aksay, I.A. (Woodbury, New York, 1995), p. 35.Google Scholar
Currey, J.D., Proc. R. Soc. London B 196, 443 (1977).Google Scholar
Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A., and Caplan, A.I., Science 255, 1098 (1992).CrossRefGoogle Scholar
Kaplan, D.L., Curr. Opin. Solid. St. M. 3, 232 (1998).CrossRefGoogle Scholar
Almqvist, N., Thompson, N.H., Smith, B.L., Stucky, G.D., Morse, D.E., and Hansma, P.K., Mater. Sci. Eng. C 7, 37 (1999).CrossRefGoogle Scholar
Kato, T., Adv. Mater. 12, 1543 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
Jackson, A.P., Vincent, J.F.V., and Turner, R.M., Proc. R. Soc. Lond. B 234, 415 (1988).Google Scholar
Wang, R.Z., Wen, H.B., Cui, F.Z., Zhang, H.B., and Li, H.D., J. Mater. Sci. 30, 2299 (1995).CrossRefGoogle Scholar
Schaffer, T.E., Ionecu-Zanetti, C., Proksch, R., Fritz, M., Walters, D.A., Almqvit, N., Zaremba, C.M., Belcher, A.M., Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K., Chem. Mater. 9, 1731 (1997).CrossRefGoogle Scholar
Song, F., Zhang, X.H., and Bai, Y.L., J. Mater. Res. 17, 1567 (2002).CrossRefGoogle Scholar
Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., and Hansma, P.K., Nature 399, 761 (1999).CrossRefGoogle Scholar
Evans, A.G., Suo, Z., Wang, R.Z., Aksay, I.A., He, M.Y., and Hutchinson, J.W., J. Mater. Res. 16, 2475 (2001).CrossRefGoogle Scholar
Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., Aksay, I.A., J. Mater. Res. 16, 2485 (2001).CrossRefGoogle Scholar
Katti, D.R., Katti, K.S., Sopp, J.M., and Sarikaya, M., Comp. Theor. Polym. Sci. 11, 397 (2001).CrossRefGoogle Scholar
Okumura, K. and Gennes, P.G. de, Eur. Phys. J. E 4, 121 (2001).CrossRefGoogle Scholar