Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T09:57:17.311Z Has data issue: false hasContentIssue false

Effects of local grain misorientation and β-Sn elastic anisotropy on whisker and hillock formation

Published online by Cambridge University Press:  23 January 2013

Pylin Sarobol*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Wei-Hsun Chen
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Aaron E. Pedigo
Affiliation:
Naval Surface Warfare Center Crane Division, Crane, Indiana 47522
Peng Su
Affiliation:
Component Quality and Technology, Cisco Systems, Inc., San Jose, California 95134
John E. Blendell
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Carol A. Handwerker
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A whisker and hillock growth model based on local film microstructure, grain misorientation, and elastic strain energy density (ESED) as the driving force for growth was developed to predict preferred sites for growth. Local grain orientations and strains measured by synchrotron microdiffraction in nine regions containing whiskers or hillocks were compared with elastic finite element analysis simulations including Sn elastic anisotropy. Whisker and hillock grains were observed to have higher crystallographic misorientations with neighboring grains than generally observed in the microstructure. While elastic simulations predicted higher local out-of-plane elastic strains and ESEDs at those locations with high misorientations before growth, synchrotron measurements of out-of-plane strains of whisker and hillock grains after growth showed relaxation, with correspondingly low ESEDs calculated from measured strains. Hence, highly localized out-of-plane elastic strains and ESEDs of grains with high relative misorientations with their neighbors determined, at least in part, which grains became whiskers or hillocks.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fisher, R.M., Darken, L.S., and Carroll, K.G.: Accelerated growth of tin whiskers. Acta Metall. 2, 368369 (1954).10.1016/0001-6160(54)90053-XCrossRefGoogle Scholar
Boettinger, W.J., Johnson, C.E., Bendersky, L.A., Moon, K-W., Williams, M.E., and Stafford, G.R.: Whisker and hillock formation on Sn SnCu and SnPb electrodeposits. Acta Mater. 53, 50335050 (2005).10.1016/j.actamat.2005.07.016CrossRefGoogle Scholar
Pedigo, A.E., Handwerker, C.A., and Blendell, J.E.: Whiskers, hillocks, and film stress evolution in electroplated Sn and Sn-Cu films. In Proceedings of Electronic Components and Technology Conference, (IEEE, New Brunswick, NJ, 2008); pp. 14981504.Google Scholar
Compton, K.G., Medizza, A., and Arnold, S.M.: Filamentary growths on metal surfaces – whiskers. Corrosion 7, 327334 (1951).10.5006/0010-9312-7.10.327CrossRefGoogle Scholar
Arnold, S.M.: The growth of metal whiskers on electrical components. In Proceedings of the IEEE Electronic Component Conference, 1959; (Elsevier, Inc., New York, NY, 2012) 7582.Google Scholar
Chaudhari, P.: Dislocation cascade mechanism in superplasticity. Metall. Trans. B 5, 16921693 (1974).10.1007/BF02646348CrossRefGoogle Scholar
Tu, K-N.: Interdiffusion and reaction in bimetallic Cu–Sn thin films. Acta Metall. 21, 347354 (1973).10.1016/0001-6160(73)90190-9CrossRefGoogle Scholar
Choi, W.J., Lee, T.Y., Tu, K.N., Tamura, N., Celestre, R.S., MacDowell, A.A., Bong, Y.Y., and Nguyen, L.: Tin whiskers studied by synchrotron radiation scanning X-ray micro-diffraction. Acta Mater. 51, 62536261 (2003).10.1016/S1359-6454(03)00448-8CrossRefGoogle Scholar
Sobiech, M., Welzell, U., Mittemeijer, E.J., Hügel, W., and Seekamp, A.: Driving force for Sn whisker growth in the system Cu-Sn. Appl. Phys. Lett. 93, 011906 (2008).10.1063/1.2953973CrossRefGoogle Scholar
Sobiech, M., Wohlschlögel, M., Welzell, U., Mittemeijer, E.J., Hügel, W., Seekamp, A., Liu, W., and Ice, G.E.: Local, submicron, strain gradients as the cause of Sn whisker growth. Appl. Phys. Lett. 94, 221901221903 (2009).10.1063/1.3147864CrossRefGoogle Scholar
Pei, F., Jadhav, N., and Chason, E.: Real-time study of whisker formation in tin/copper systems by EBSD characterization. In Whisker Growth in Tin and Related Solder Alloys, Pb-Free Solders and Other Materials for Emerging Interconnect and Packaging Technologies, 141st TMS Annual Meeting, Orlando, FL, March 13, 2012.Google Scholar
Williams, M.E., Moon, K-W., Boettinger, W.J., Josell, D., and Deal, A.D.: Hillock and whisker growth on Sn and SnCu electrodeposits on a substrate not forming interfacial intermetallic compounds. J. Electron. Mater. 36, 214219 (2007).10.1007/s11664-006-0071-7CrossRefGoogle Scholar
Zhao, J-H., Su, P., Ding, M., Chopin, S., and Ho, P.S.: Microstructure-based stress modeling of tin whisker growth. IEEE Trans. Electron. Packag. Manuf. 29, 265273 (2006).10.1109/TEPM.2006.887393CrossRefGoogle Scholar
Lee, B-Z. and Lee, D.N.: Spontaneous growth mechanism of tin whiskers. Acta Matall. 46, 37013714 (1998).10.1016/S1359-6454(98)00045-7CrossRefGoogle Scholar
Rayne, J.A. and Chandrasekhar, B.S.: Elastic constants of β Tin from 4.2°K to 300°K. Phys. Rev. 120, 16581663 (1960).10.1103/PhysRev.120.1658CrossRefGoogle Scholar
House, D.G. and Vernon, E.V.: Determination of the elastic moduli of tin single crystals, and their variation with temperature. Br. J. Appl. Phys. 11, 254259 (1960).10.1088/0508-3443/11/6/308CrossRefGoogle Scholar
Jadhav, N., Buchovecky, E., Chason, E., and Bower, A.F.: Real-time SEM/FIB studies of whisker growth and surface modification. JOM 62, 3037 (2010).10.1007/s11837-010-0105-8CrossRefGoogle Scholar
Sarobol, P., Pedigo, A.E., Su, P., Blendell, J.E., and Handwerker, C.A.: Defect morphology and texture in Sn, Sn–Cu, and Sn–Cu–Pb electroplated films. IEEE Trans. Electron. Packag. Manuf. 33, 159164 (2010).10.1109/TEPM.2010.2046172CrossRefGoogle Scholar
Sarobol, P., Pedigo, A.E., Su, P., Li, L., Xue, J., Blendell, J.E., and Handwerker, C.A.: A synchrotron micro-diffraction investigation of crystallographic texture of high-Sn alloy films and its effects on whisker growth. In Proceedings of Electronic Components and Technology Conference, 2010; pp. 162169.Google Scholar
Pedigo, A.E., Sarobol, P., Su, P., Handwerker, C.A., and Blendell, J.E.: Crystallographic texture and whisker growth in electroplated Sn and Sn alloy films. In Proceedings of the International Symposium on Microelectronics IMAPS, 2009.Google Scholar
Frye, A., Galyon, G.T., and Palmer, L.: Crystallographic texture and whiskers in electrodeposited tin films. IEEE Trans. Electron. Packag. Manuf. 30, 210 (2007).10.1109/TEPM.2007.891763CrossRefGoogle Scholar
Lingk, C., Gross, M.E., and Brown, W.L.: Texture development of blanket electroplated copper films. J. Appl. Phys. 87, 22322236 (2000).10.1063/1.372166CrossRefGoogle Scholar
Wenk, H.R., Cont, L., Xie, Y., Lutterotti, L., Ratschbacher, L., and Richardson, J.: Rietveld texture analysis of Dabie Shan eclogite from TOF neutron diffraction spectra. J. Appl. Crystallogr. 34, 442453 (2001).10.1107/S0021889801005635CrossRefGoogle Scholar
Pedigo, A.E.: The influence of the effective physical properties of tin electrodeposited films on the growth of tin whiskers. Ph.D. Thesis, Purdue University, West Lafayette, IN, 2011.Google Scholar
Kunz, M., Tamura, N., Chen, K., MacDowell, A.A., Celestre, R.S., Church, M.M., Fakra, S., Domning, E.E., Glossinger, J.M., Plate, D.W., Smith, B.V., Warwick, T., Padmore, H.A., and Ustundag, E.: A dedicated superbend X-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source. Rev. Sci. Instrum. 80, 035108 (2009b).10.1063/1.3096295CrossRefGoogle ScholarPubMed
Tamura, N., MacDowell, A.A., Spolenak, R., Valek, B.C., Bravman, J.C., Brown, W.L., Celestre, R.S., Padmore, H.A., Batterman, B.W., and Patel, J.R.: Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J. Synchrotron Radiat. 10, 137143 (2003).10.1107/S0909049502021362CrossRefGoogle ScholarPubMed
http://www.ctcms.nist.gov/oof/oof2/ : OOF: Finite Element Analysis of Microstructures. (accessed May 14, 2012).Google Scholar
Reid, A.C.E., Lua, R.C., García, R.E., Coffman, V.R., and Langer, S.A.: Modelling microstructures with OOF2. Int. J. Mater. Prod. Technol. 35, 361373 (2009).10.1504/IJMPT.2009.025687CrossRefGoogle Scholar
Susan, D.F., Michael, J.R., Yelton, W.G., McKenzie, B.B., Grant, R.P., Pillars, J., and Rodriguez, M.A.: Understanding and Predicting Metallic Whisker Growth and its Effects on Reliability: LDRD Final Report, SAND2012–0519; Sandia National Laboratory, Albuquerque, NM, 2012.Google Scholar
He, Y. and Jonas, J.J.: Rodrigues-Frank spaces for misorientations and orientation relationships between crystals of any two crystallographic point groups. In Applications of Texture Analysis: Ceramic Transactions, Rollett, A.D. ed.; John Wiley & Sons, Inc, Hoboken, NJ, 2008; pp. 269280.10.1002/9780470444214.ch29CrossRefGoogle Scholar
Morawiec, A.: Misorientation-angle distribution of randomly oriented symmetric objects. J. Appl. Crystallogr. 28, 289293 (1995).10.1107/S0021889894011088CrossRefGoogle Scholar
Voigt, W.: Lehrbuch der Kristallphysik (B. Teubner, Leipzig, 1928); 1910.Google Scholar
Vodnick, A.M., Nowak, D.E., Labat, S., Thomas, O., and Baker, S.P.: Out-of-plane stresses arising from grain interactions in textured thin films. Acta Mater. 58, 24522463 (2010).10.1016/j.actamat.2009.12.031CrossRefGoogle Scholar