Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T01:43:19.882Z Has data issue: false hasContentIssue false

Effects of inorganic components on the mechanical properties of inorganic-organic hybrids synthesized from metal alkoxides and polydimethylsiloxane

Published online by Cambridge University Press:  31 January 2011

Noriko Yamada
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 3-35-1 Ida, Nakahara-ku, Kawasaki 211, Japan
Ikuko Yoshinaga
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 3-35-1 Ida, Nakahara-ku, Kawasaki 211, Japan
Shingo Katayama
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 3-35-1 Ida, Nakahara-ku, Kawasaki 211, Japan
Get access

Abstract

Inorganic-organic hybrids (M–O–PDMS hybrids) have been synthesized from silanolterminated polydimethylsiloxane (PDMS) and inorganic sources of Al(O–sec–C4H9)3, Ti(OC2H5)4, and Ta(OC2H5)5. The molar ratio of M(OR)n/PDMS and the inorganic component derived from the different metal alkoxides were found to influence the structure and mechanical properties of the hybrids. Differential scanning calorimetry (DSC) measurements showed that the interaction between the inorganic component and PDMS increased in the order Al–O–PDMS < Ta–O–PDMS < Ti–O–PDMS hybrid. The stress-strain experiments revealed that the mechanical properties of the M–O–PDMS hybrids differed by the inorganic component, reflecting the network structure and strength of the interaction between the inorganic component and PDMS.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Philipp, G. and Schmidt, H., J. Non-Cryst. Solids 63, 283 (1984).Google Scholar
2.Schmidt, H., J. Non-Cryst. Solids 73, 681 (1985).Google Scholar
3.Wilkes, G. L., Orler, B., and Huang, H., Polym. Prep. (Am. Chem. Soc. Div. Polym. Chem.) 26, 300 (1985).Google Scholar
4.Judeinstein, P. and Sanchez, C., J. Mater. Chem. 6, 511 (1996).Google Scholar
5.Huang, H., Orler, B., and Wilkes, G.L., Polym. Bull. 14, 557 (1985).CrossRefGoogle Scholar
6.Huang, H., Orler, B., and Wilkes, G. L., Macromol. 20, 1322 (1987).Google Scholar
7.Huang, H., Glaser, R. H., and Wilkes, G.L., Polym. Prep. (Am. Chem. Soc. Div. Polym. Chem.) 28, 434 (1987).Google Scholar
8.Mackenzie, J. D., Chung, Y.J., and Hu, Y., J. Non-Cryst. Solids 147 & 148, 271 (1992).Google Scholar
9.Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem. 18, 259 (1988).Google Scholar
10.Yamada, N., Yoshinaga, I., and Katayama, S., J. Mater. Chem. 7, 1491 (1997).Google Scholar
11.Lee, C.L., Johannson, O. K., Flaningam, O.L., and Hahn, P., Polym. Prep. (Am. Chem. Soc. Div. Polym. Chem.) 10, 1311 (1969).Google Scholar
12.Katayama, S., Yoshinaga, I., and Yamada, N., in Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Materials, edited by Coltrain, B. K., Sanchez, C., Schaefer, D.W., and Wilkes, G. L. (Mater. Res. Soc. Symp. Proc. 435, Pittsburgh, PA, 1996), p. 321.Google Scholar
13.Joardar, S.S., Jones, M. A., and Ward, T. C., Polym. Mater. Sci. Eng. 67, 254 (1992).Google Scholar
14.Weir, C. E., Leser, W. H., and Wood, L. A., J. Res. Natl. Bur. Stand. 44, 367 (1950).Google Scholar
15.Clarson, S. J., Mark, J. E., and Dodgson, K., Polym. Commun. 29, 208 (1988).Google Scholar
16.Stepto, R. F. T., in Siloxane Polymers, edited by Clarson, S.J. and Semlyen, J. A. (PTR Prentice-Hall, Inc. Englewood Cliffs, NJ, 1993), p. 373.Google Scholar
17.Hiemonz, P. C., in Polymer Chemistry: The Basic Concepts (Marcel Dekker Inc., New York, 1984), p. 133.Google Scholar