Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:38:05.477Z Has data issue: false hasContentIssue false

Effects of germanium on the electronic transport mechanism in Co20(Cu1-xGex)80 nanogranular ribbons

Published online by Cambridge University Press:  31 January 2011

J. He
Affiliation:
Shenyang National Laboratory for Materials Science and International Center for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China, and Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0113
Z. D. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science and International Center for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
J. P. Liu
Affiliation:
Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska, 68588–0113, and Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272
D. J. Sellmyer
Affiliation:
Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0113
Get access

Abstract

The dependency of giant magnetoresistance (GMR) on the nonmagnetic matrix in nanogranular Co20(Cu1-xGex)80 ribbons was studied. When the matrix Cu is substituted with semiconductor Ge, the magnetoresistance transitioned from negative to positive at low temperatures. The positive GMR effect is closely related to the quantity of Co/Co3Ge2/Co junctionlike configurations. This result provides evidence for the competition between two types of electronic transport mechanisms in the magnetic granular ribbons: (i) electronic spin-dependent scattering, inducing a negative magnetoresistance and (ii) Coulomb blockade of the electronic tunneling, inducing a positive magnetoresistance.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baibich, M.N., Broto, J.M., Fert, A., Nguyen, V.D.F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazeles, J., Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
2.Parkin, S.S.P., Bhadra, R., and Roche, K.P., Phys. Rev. Lett. 66, 2152 (1991).CrossRefGoogle Scholar
3.Barthelemy, A., Fert, A., Baibich, M.N., Hadjoudj, S., Petroff, F., Etienne, P., Hhbanel, R., Lequien, S., Nguyen, V.D.F., and Creuzet, G., J. Appl. Phys. 67, 5908 (1990).CrossRefGoogle Scholar
4.Xiao, J.Q., Jiang, J., and Chien, C.L., Phys. Rev. Lett. 68, 3749 (1992).CrossRefGoogle Scholar
5.Xiong, P., Xiao, G., Wang, J.Q., Jiang, J.S., and Chien, C.L., Phys. Rev. Lett. 69, 3220 (1992).CrossRefGoogle Scholar
6.Fujimori, H., Mitani, S., and Ohnuma, S., Mater. Sci. Eng. B 31, 219 (1995).CrossRefGoogle Scholar
7.Milner, A., Gerber, A., Groisman, B., Karpovsky, M., and Gladkikh, A., Phys. Rev. Lett. 76, 475 (1996).CrossRefGoogle Scholar
8.Zhang, S.Y. and Cao, Q.Q., J. Appl. Phys. 79, 6261 (1996).CrossRefGoogle Scholar
9.Chen, L.H., Jun, S., Fiefel, T.H., and Wu, T.C., J. Appl. Phys. 76, 6814 (1994).CrossRefGoogle Scholar
10.Mitani, S., Takahashi, S., Takanashi, K., Yakushiji, K., Maekawa, S., and Fujimori, H., Phys. Rev. Lett. 81, 2799 (1998).CrossRefGoogle Scholar
11.Yang, W., Jiang, Z.S., Wang, W.N., and Du, Y.W., Solid State Commun. 104, 479 (1997).CrossRefGoogle Scholar
12.Bruckl, H. and Reiss, G., Phys. Rev. B 58, 8893 (1998).CrossRefGoogle Scholar
13.Grabert, H. and Devoret, M., Single Charge Tunneling (Plenum Press, New York, 1992).CrossRefGoogle Scholar
14.Akinaga, H., Mizuguchi, M., Ono, K., and Oshima, M., Appl. Phys. Lett. 76, 357 (2000).CrossRefGoogle Scholar
15.Akinaga, H., Mizuguchi, M., Ono, K., and Oshima, M., Appl. Phys. Lett. 76, 2600 (2000).CrossRefGoogle Scholar
16.Wang, F., Zhao, T., Zhang, Z.D., Wang, M.G., Xiong, D.K., Jin, X.M., Geng, D.Y., Zhao, X.G., Liu, W., Yu, M.H., and de-Boer, F.R., J. Phys. Condens. Matter 12, 2525 (2000).CrossRefGoogle Scholar
17.Wang, F., Zhang, Z.D., Zhao, T., Wang, M.G., Xiong, D.K., Jin, X.M., Geng, D.Y., Zhao, X.G., Liu, W., and Yu, M.H., J. Phys. Condens. Matter 12, 4829 (2000).CrossRefGoogle Scholar
18.Zhang, Z.D., Wang, F., He, J., Zhao, T., Wang, M.G., Xiong, D.K., Geng, D.Y., Zhao, X.G., Yu, M.H., and Liu, W., J. Phys. D: Appl. Phys. 33, 1794 (2000).CrossRefGoogle Scholar
19.He, J., Zhang, Z.D., Liu, J.P., and Sellmyer, D.J., Appl. Phys. Lett. 80, 1779 (2002).CrossRefGoogle Scholar
20.Thio, T. and Solin, S.A., Appl. Phys. Lett. 72, 3497 (1998).CrossRefGoogle Scholar
21.Thio, T., Solin, S.A., Hines, D.R., Bennett, J.W., Kawano, M., Oda, N., and Sano, M., Phys. Rev. B 57, 12239 (1998).CrossRefGoogle Scholar