Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:21:35.677Z Has data issue: false hasContentIssue false

Effects of defects on the morphologies of GaN nanorods grown on Si (111) substrates

Published online by Cambridge University Press:  31 January 2011

Jeong Yong Lee
Affiliation:
Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea
Tae Won Kang
Affiliation:
Quantum Functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Korea
Taewhan Kim*
Affiliation:
National Research Laboratory for Nano Quantum Electronics Devices, Department of Electronics and Communications Engineering, Hanyang University, Seoul 133-791, Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Scanning electron microscopy and transmission electron microscopy images and selected area electron diffraction pattern showed that the one-dimensional GaN nanorods with [0001]-oriented single-crystalline wurzite structures were formed on Si (111) substrates by using hydride vapor-phase epitaxy without a catalyst. Although some stacking faults and inversion domain boundaries existed in the GaN nanorods, few other defects such as threading dislocations were observed. The formation of the facet plane in the N-polar region of the GaN nanorod containing an inversion domain boundary originated from the slow growth rate, followed by the lateral adatom diffusion from the Ga-polar region to reduce the length difference.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mueller, A.H., Petruska, M.A., Achermann, M., Werder, D.J., Akhadov, E.A., Koleske, D.D., Hoffbauer, M.A., and Klimov, V.I.: Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039 (2005).CrossRefGoogle ScholarPubMed
2.Qian, F., Gradečak, S., Li, Y., Wen, C-Y., and Lieber, C.M.: Core/multishell nanowire heterostructures as multicolor, high-efficiencylight-emitting diodes. Nano Lett. 5, 2287 (2005).CrossRefGoogle ScholarPubMed
3.Kim, H-M., Cho, Y-H., Lee, H., Kim, S.I., Ryu, S.R., Kim, D.Y., Kang, T.W., and Chung, K.S.: High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4, 1059 (2004).CrossRefGoogle Scholar
4.Sharma, R., Pattison, P.M., Masui, H., Farrell, R.M., Baker, T.J., Haskell, B.A., Wu, F., DenBaars, S.P., Speck, J.S., and Nakamura, S.: Demonstration of a semipolar (101·3) InGaN/GaN green light emitting diode. Appl. Phys. Lett. 87, 231110 (2005).CrossRefGoogle Scholar
5.Kuo, S.Y., Kei, C.C., Hsiao, C.N., Chao, C.K., Lai, F.I., Kuo, H.C., Hsieh, W.F., and Wang, S.C.: Catalyst-free GaN nanorods grown by metalorganic molecular beam epitaxy. IEEE Trans. Nanotechnol. 5, 273 (2006).CrossRefGoogle Scholar
6.Kim, Y.H., Lee, J.Y., Lee, S.H., Oh, J.E., and Lee, H.S.: Synthesis of aligned GaN nanorods on Si (111) by molecular beam epitaxy. Appl. Phys. A 80, 1635 (2005).CrossRefGoogle Scholar
7.Li, P.G., Guo, X., Wang, X., and Tang, W.H.: Single-crystalline wurtzite GaN nanowires and zigzagged nanostructures fabricated by sublimation sandwich method. J. Alloys Compd. 475, 463 (2009).CrossRefGoogle Scholar
8.Wu, X.H., Brown, L.M., Kapolnek, D., Keller, S., Keller, B., DenBaars, S.P., and Speck, J.S.: Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3. J. Appl. Phys. 80, 3228 (1996).CrossRefGoogle Scholar
9.Cao, X.A., LeBoeuf, S.F., D'Evelyn, M.P., Arthur, S.D., Kretchmer, J., Yan, C.H., and Yang, Z.H.: Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates. Appl. Phys. Lett. 84, 4313 (2004).CrossRefGoogle Scholar
10.Lee, S.M., Belkhir, M.A., Zhu, X.Y., Lee, Y.H., Hwang, Y.G., and Frauenheim, T.: Electronic structures of GaN edge dislocations. Phys. Rev. B 61, 16033 (2000).CrossRefGoogle Scholar
11.Simpkins, B.S., Yu, E.T., Waltereit, P., and Speck, J.S.: Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride. J. Appl. Phys. 94, 1448 (2003).CrossRefGoogle Scholar
12.Kim, K-C., Schmidt, M.C., Wu, F., McLaurin, M.B., Hirai, A., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Low extended defect density nonpolar m-plane GaN by sidewall lateral epitaxial overgrowth. Appl. Phys. Lett. 93, 142108 (2008).CrossRefGoogle Scholar
13.Onuma, T., Okamoto, K., Ohta, H., and Chichibu, S.F.: Anisotropic optical gain in m-plane InxGa1°xN/GaN multiple quantum well laser diode wafers fabricated on the low defect density freestanding GaN substrates. Appl. Phys. Lett. 93, 091112 (2008).CrossRefGoogle Scholar
14.Tang, Y.B., Chen, Z.H., Song, H.S., Lee, C.S., Cong, H.T., Cheng, H.M., Zhang, W.J., Bello, I., and Lee, S.T.: Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 8, 4191 (2008).CrossRefGoogle ScholarPubMed
15.Zhong, Z., Qian, F., Wang, D., and Lieber, C.M.: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003).CrossRefGoogle Scholar
16.Hashiguchi, G., Goda, T., Hosogi, M., Hirano, K., Kaji, N., Baba, Y., Kakushima, K., and Fujita, H.: DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. Anal. Chem. 75, 4347 (2003).CrossRefGoogle ScholarPubMed
17.Kuykendall, T., Pauzauskie, P., Lee, S., Zhang, Y., Goldberger, J., and Yang, P.: Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063 (2003).CrossRefGoogle Scholar
18.Chen, H.Y., Lin, H.W., Shen, C.H., and Gwo, S.: Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 89, 243105 (2006).CrossRefGoogle Scholar
19.Seryogin, G., Shalish, I., Moberlychan, W., and Narayanamurti, V.: Catalytic hydride vapour phase epitaxy growth of GaN nanowires. Nanotechnology 16, 2342 (2005).CrossRefGoogle ScholarPubMed
20.Cavallini, A., Polenta, L., Rossi, M., Richter, T., Marso, M., Meijers, R., Calarco, R., and Lüth, H.: Defect distribution along single GaN nanowhiskers. Nano Lett. 6, 1548 (2006).CrossRefGoogle ScholarPubMed
21.Lee, K.H., Kwon, Y.H., Ryu, S.Y., Kang, T.W., Jung, J.H., Lee, D.U., and Kim, T.W.: Microstructural properties and atomic arrangements of GaN nanorods grown on Si (111) substrates by using hydride vapor-phase epitaxy. J. Cryst. Growth 310, 2977 (2008).CrossRefGoogle Scholar
22.Aujol, E., Napierala, J., Trassoudaine, A., Gil-Lafon, E., and Cadoret, R.: Thermodynamical and kinetic study of the GaN growth by HVPE under nitrogen. J. Cryst. Growth 222, 538 (2001).CrossRefGoogle Scholar
23.Debnath, R.K., Meijers, R., Richter, T., Stoica, T., Calarco, R., and Lüth, H.: Mechanism of molecular-beam-epitaxy growth of GaN nanowires on Si (111). Appl. Phys. Lett. 90, 123117 (2007).CrossRefGoogle Scholar
24.Stampfl, C. and Van de Walle, C.G.: Energetics and electronic structure of stacking faults in AlN, GaN, and InN. Phys. Rev. B 57, R15052 (1998).CrossRefGoogle Scholar
25.Park, D.J., Lee, J.Y., Kim, D.C., Mohanta, S.K., and Cho, H.K.: Defects in interfacial layers and their role in the growth of ZnO nanorods by metallorganic chemical vapor deposition. Appl. Phys. Lett. 91, 143115 (2007).CrossRefGoogle Scholar
26.Northrup, J.E., Neugebauer, J., and Romano, L.T.: Inversion domain and stacking mismatch boundaries in GaN. Phys. Rev. Lett. 77, 103 (1996).CrossRefGoogle Scholar
27.Wu, F., Craven, M.D., Lim, S-H., and Speck, J.S.: Polarity determination of a-plane GaN on r-plane sapphire and its effects on lateral overgrowth and heteroepitaxy. J. Appl. Phys. 94, 942 (2003).CrossRefGoogle Scholar
28.Cho, H.K., Lee, J.Y., Yang, G.M., and Kim, C.S.: Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density. Appl. Phys. Lett. 79, 215 (2001).CrossRefGoogle Scholar