Published online by Cambridge University Press: 31 January 2011
The microstructures of (A) near stoichiometric, (B) Y-rich, and (C) Y- and Cu-rich YBa2Cu3O7−x thin films have been studied by high-resolution transmission electron microscopy. The films were deposited on (100) LaAlO3 by plasma-enhanced metalorganic chemical vapor deposition. In near stoichiometric films, microstructural features similar to those of thin films deposited by other techniques have been observed. These features which include epitaxial growth with the c-axis perpendicular to the substrate, twin boundaries on (110) planes, and stacking faults on (100) and (001) planes were also present in the off-stoichiometric materials. In Y-rich thin films, yttria (Y2O3) precipitates with an average size of about 5 nm have been identified in the matrix. The precipitates are uniformly distributed, have a high density as large as 1024/m3, and are highly oriented with respect to the matrix. In Y- and Cu-rich thin films, CuO particles up to 1 μm in size were observed on the surfaces of the films. The observed microstructural features were similar to those of the Y-rich materials.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.