Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T22:47:08.508Z Has data issue: false hasContentIssue false

Effects of alloying on oxidation of Cu-based bulk metallic glasses

Published online by Cambridge University Press:  03 March 2011

C.Y. Tam
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
C.H. Shek*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The oxidation kinetics and the effects of alloying on the oxidation behaviors of copper-based bulk metallic glasses were studied. The oxidation kinetics, oxide compositions, and structures were investigated by thermogravimetric analysis (TGA), x-ray diffraction, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Both the TGA results and the XPS depth profile measurements showed that the oxidation resistance of Cu60Zr30Ti10 bulk metallic glass was improved by adding Hf, but it deteriorated when it was alloyed with Y. The oxide phases were found to be ZrO2, Cu2O, and CuO in samples heated at 573 K while an additional metallic Cu phase was detected in the ones heated at 773 K. A porous oxide structure was observed in the (Cu0.6Zr0.3Ti0.1)98Y2 metallic glass oxidized at 673 K, and the poor oxidation resistance of the alloy is attributed to the porous structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: Thermal and mechanical properties of Cu-based bulk glassy alloys. Mater. Trans. 42, 1149 (2001).CrossRefGoogle Scholar
2Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: Formation and mechanical properties of Cu–Hf–Ti bulk glassy alloys. J. Mater. Res. 16, 2836 (2001).CrossRefGoogle Scholar
3Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: Cu-based bulk glassy alloys with good mechanical properties in Cu–Zr–Hf–Ti system. Mater. Trans. 42, 1805 (2001).CrossRefGoogle Scholar
4Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: Cu-based bulk glassy alloys with high tensile strength of over 2000 MPa. J. Non-Cryst. Solids 304, 200 (2002).CrossRefGoogle Scholar
5Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
6Louzguine, D.V. and Inoue, A.: Evaluation of the thermal stability of a Cu60Hf25Ti15 metallic glass. Appl. Phys. Lett. 81, 2561 (2002).CrossRefGoogle Scholar
7Aronin, A.S., Abrosimova, G.E., Gurov, A.F., Kir’yanov, Y.V. and Molokanov, V.V.: Nanocrystallization of bulk Zr–Cu–Ti metallic glass. Mater. Sci. Eng. A304–306, 375 (2001).CrossRefGoogle Scholar
8Louzguine, D.V. and Inoue, A.: Nanocrystallization of Cu–(Zr or Hf)–Ti metallic glasses. J. Mater. Res. 17, 2112 (2002).CrossRefGoogle Scholar
9Jiang, J.Z., Yang, B., Saksl, K., Franz, H. and Pryds, N.: Crystallization of Cu60Ti20Zr20 metallic glass with and without pressure. J. Mater. Res. 18, 895 (2003).CrossRefGoogle Scholar
10Wang, Z.X., Zhao, D.Q., Pan, M.X., Wang, W.H., Okada, T. and Utsumi, W.: Formation and crystallization of CuZrHfTi bulk metallic glass under ambient and high pressures. J. Phys.: Condens. Matter 15, 5923 (2003).Google Scholar
11Yamamoto, T., Qin, C.L., Zhang, T., Asami, K. and Inoue, A.: Formation, thermal stability, mechanical properties and corrosion resistance of Cu–Zr–Ti–Ni–Nb bulk glassy alloys. Mater. Trans. 44, 1147 (2003).CrossRefGoogle Scholar
12Qin, C.L., Asami, K., Zhang, T., Zhang, W. and Inoue, A.: Effects of additional elements on the glass formation and corrosion behavior of bulk glassy Cu–Hf–Ti alloys. Mater. Trans. 44, 1042 (2003).CrossRefGoogle Scholar
13Qin, C.L., Asami, K., Zhang, T., Zhang, W. and Inoue, A.: Corrosion behavior of Cu–Zr–Ti–Nb bulk glassy alloys. Mater. Trans. 44, 749 (2003).CrossRefGoogle Scholar
14Asami, K., Qin, C-L., Zhang, T. and Inoue, A.: Effect of additional elements on the corrosion behavior of a Cu–Zr–Ti bulk metallic glass. Mater. Sci. Eng. A375–377, 235 (2004).CrossRefGoogle Scholar
15Köster, U., Zander, D., Triwikantoro, A., Rüdiger, X. and Jastrow, L.: Environmental properties of Zr-based metallic glasses and nanocrystalline alloys. Scripta Mater. 44, 1649 (2001).CrossRefGoogle Scholar
16Kai, W., Hsieh, H.H., Nieh, T.G. and Kawamura, Y.: Oxidation behavior of a Zr–Cu–Al–Ni amorphous alloy in air at 300–425 °C. Intermetallics. 10, 1265 (2002).CrossRefGoogle Scholar
17Dhawan, A., Raetzke, K., Faupel, F. and Sharma, S.K.: Air oxidation of Zr65Cu17.5Ni10Al7.5 in its amorphous and supercooled liquid states, studied by thermogravimetric analysis. Phys. Status Solidi A 199, 431 (2003).CrossRefGoogle Scholar
18Branda, F., Luciani, G., Costantini, A., Scardi, P., Lanotte, L. and D’agostino, A.: Thermal evolution of Fe62.5Co6Ni7.5Zr6Nb2Cu1B15 metallic glass. J. Mater. Sci. 37, 1887 (2002).CrossRefGoogle Scholar
19Jastrow, L., Köster, U. and Meuris, M.: Catastrophic oxidation of Zr-TM (noble metals) glasses. Mater. Sci. Eng. A375–377, 440 (2004).CrossRefGoogle Scholar
20Sun, X., Schneider, S., Geyer, U., Johnson, W.L. and Nicolet, M-A.: Oxidation and crystallization of an amorphous Zr60Al15Ni25 alloy. J. Mater. Res. 11, 2738 (1996).CrossRefGoogle Scholar
21Sharma, S.K., Strunskus, T., Ladebusch, H. and Faupel, F.: Surface oxidation of amorphous Zr65Cu17.5Ni10Al7.5 and Zr46.75Ti8.25Cu7.5Ni10Be27.5. Mater. Sci. Eng. A304–306, 747 (2001).CrossRefGoogle Scholar
22Kiene, M., Strunskus, T., Hasse, G. and Faupel, F. Oxide formation on the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5, in Bulk Metallic Glasses, edited by Johnson, W.L., Inoue, A., and Liu, C.T. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1999), p. 167.Google Scholar
23Song, Z., Bao, X., Wild, U., Muhler, M. and Ertl, G.: Oxidation of amorphous Ni-Zr alloys studied by XPS, UPS, ISS and XRD. Appl. Surf. Sci. 134, 31 (1998).CrossRefGoogle Scholar
24Yamasaki, M., Habazaki, H., Asami, K. and Hashimoto, K.: Oxidation behavior of amorphous Ni–Zr and Ni–Zr–Sm alloys. J. Electrochem. Soc. 147, 4502 (2000).CrossRefGoogle Scholar
25Triwikantoro, Toma, D., Meuris, M. and Köster, U.: Oxidation of Zr-based metallic glasses in air. J. Non-Cryst. Solids 250–252, 719 (1999).CrossRefGoogle Scholar
26Kimura, H.M., Asami, K., Inoue, A. and Masumoto, T.: The oxidation of amorphous Zr-base binary alloys in air. Corros. Sci. 35, 909 (1993).CrossRefGoogle Scholar
27Tam, C.Y. and Shek, C.H.: Oxidation behavior of Cu60Zr30Ti10 bulk metallic glass. J. Mater. Res. 20, 1396 (2005).CrossRefGoogle Scholar
28Cabrera, N. and Mott, N.F.: Theory of the oxidation of metals. Rep. Prog. Phys. 12, 163 (1948).CrossRefGoogle Scholar
29Suzer, S., Sayan, S., Holl, M.M.B., Garfunkel, E., Hussain, Z. and Hamdan, N.M.: Soft x-ray photoemission studies of Hf oxidation. J. Vac. Sci. Technol. A 21, 106 (2003).CrossRefGoogle Scholar
30Reichl, R. and Gaukler, K.H.: An investigation of air-grown yttrium oxide and experimental determination of the sputtering yield and the inelastic mean free path. Appl. Surf. Sci. 26, 196 (1986).CrossRefGoogle Scholar
31Fujimori, A. and Schlapbach, L.: Electronic structure of yttrium hydride studied by x-ray photoemission spectroscopy. J. Phys. C: Solid State Phys. 17, 341 (1984).CrossRefGoogle Scholar
32Lide, D.R.: CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, Boca Raton, FL, 2003), pp. 976.Google Scholar
33Barin, I.: Thermochemical Data of Pure Substances, 2nd ed. (VCH, Weinheim, New York, 1993), pp. 483, 485, 672, 1544, 1546, 1675, 1734.Google Scholar
34Park, J-H. and Natesan, K.: Oxidation of copper and electronic transport in copper oxides. Oxid. Met. 39, 411 (1993).CrossRefGoogle Scholar
35Köster, U., Jastrow, L. and Zander, D.: Oxidation of Zr-TM metallic glasses. J. Metastable and Nanocrystalline Materials 15, 49 (2003).CrossRefGoogle Scholar