Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T09:05:44.675Z Has data issue: false hasContentIssue false

Effect of TiO2 addition on the crystallization of Li2O–Al2O3–4SiO2 precursor powders by a sol-gel process

Published online by Cambridge University Press:  31 January 2011

Shaw-Bing Wen
Affiliation:
Department of Resources Engineering, National Cheng-Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan, Republic of China
Nan-Chung Wu
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan, Republic of China
Sheng Yang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan, Republic of China
Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung Institute of Technology, 415 Chien-Kung Road, Kaohsiung, 80782, Taiwan, Republic of China
Get access

Abstract

The activation energy for crystallization of β-spodumene in TiO2 added Li2O–Al2O3–4SiO2 (LAS) precursor powders by a sol-gel process was studied by using isothermal and nonisothermal methods. Nonisothermal kinetics for the LAS precursor powder system were investigated using differential thermal analysis (DTA) and quantitative x-ray diffraction (XRD) analysis. The rate of crystallization of LAS precursor powders decreased as the TiO2 content increased. For samples with addition of 0, 5.0, and 10.0 wt% TiO2, the activation energies for crystallization by DTA evaluation were 165.06, 194.46, and 205.38 kJ/mol, respectively. According to the quantitative XRD method, the values computed by the Johnson–Mehl–Avrami equation were 162.54, 189.42, and 196.14 kJ/mol, respectively. The values obtained by isothermal and nonisothermal kinetic methods from DTA and XRD analyses were in good agreement. The growth morphology parameters were 0.59, 0.70, and 0.76, respectively, for the LAS precursor powder with TiO2 addition of 0, 5.0, and 10.0 wt%, showing a rodlike growth. In the LAS precursor powder system, TiO2 did not act as the nucleative agent.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scheidler, H. and Rodek, E., Am. Ceram. Soc. Bull. 68, 1926 (1989).Google Scholar
2.Rabinovich, E.M., J. Mater. Sci. 20, 4259 (1985).CrossRefGoogle Scholar
3.Ostertag, W., Fischer, G.R., and Williams, J.P., J. Am. Ceram. Soc. 5, 651 (1968).CrossRefGoogle Scholar
4.Knickerbocker, S., Tuzzolo, M.R., and Lawhorne, S., J. Am. Ceram. Soc. 72, 1873 (1989).CrossRefGoogle Scholar
5.Shyu, J.J. and Lee, H.H., J. Am. Ceram. Soc. 78, 2161 (1995).CrossRefGoogle Scholar
6.Shyu, J.J. and Wang, C.T., J. Mater. Res. 11, 2518 (1996).CrossRefGoogle Scholar
7.Kobayashi, H., Ishibachi, N., Akiba, T., and Mitamura, T., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi (J. Ceram. Soc. Jpn.) 98, 703 (1990).CrossRefGoogle Scholar
8.Yang, J.S., Sakka, S., Yoko, T., and Kozuka, H., J. Mater. Sci. 26, 1827 (1991).CrossRefGoogle Scholar
9.Suzuki, H., Takahashi, J.I., and Saito, H., Chem. Soc. Jpn. 10, 1319 (1991).Google Scholar
10.Sestak, J., Phys. Chem. Glasses. 15, 137 (1974).Google Scholar
11.Zdaniewski, W., J. Am. Ceram. Soc. 58, 163 (1975).CrossRefGoogle Scholar
12.Matusita, K., Sakka, S., and Matsui, Y., J. Mater. Sci. 10, 961 (1975).CrossRefGoogle Scholar
13.Matusita, K., Sakka, S., Maki, T., and Taskin, M., J. Mater. Sci. 10, 94 (1975).CrossRefGoogle Scholar
14.Marotta, A. and Buri, A., Thermochim. Acta 25, 155 (1978).CrossRefGoogle Scholar
15.Marotta, A., Buri, A., and Valent, G.L., J. Mater. Sci. 13, 2483 (1978).CrossRefGoogle Scholar
16.Matusita, K. and Sakka, S., Phys. Chem. Glasses 20, 81 (1979).Google Scholar
17.Matusita, K. and Sakka, S., J. Non-Cryst. Solids 38, 39, 741 (1980).CrossRefGoogle Scholar
18.Marotta, A., Buir, A., and Branda, F., J. Mater. Sci. 16, 341 (1981).CrossRefGoogle Scholar
19.Matusita, K., Komatsu, T., and Yokota, R., J. Mater. Sci. 19, 214 (1984).CrossRefGoogle Scholar
20.Branda, F., Buir, A., Marotta, A., and Saiello, S., Thermochim. Acta 80, 269 (1984).CrossRefGoogle Scholar
21.Lee, J.S., Perng, J-Ch., and Huang, Ch-W., Thermochim. Acta 161, 29 (1980).CrossRefGoogle Scholar
22.Yannacopoulos, S. and Kasap, S.O., J. Mater. Res. 5, 789 (1990).CrossRefGoogle Scholar
23.Tkalcec, E., Senija, D., Dondur, V., and Petranovic, N., J. Am. Ceram. Soc. 75, 1958 (1992).CrossRefGoogle Scholar
24.Hsi, C.S. and Wang, M.C., J. Mater. Res. 13, 2655 (1998).Google Scholar
25.Chen, F.P.H, J. Am. Ceram. Soc. 46, 476 (1963).CrossRefGoogle Scholar
26.Freiman, S.W. and Hench, L.L., J. Am. Ceram. Soc. 52, 382 (1968).CrossRefGoogle Scholar
27.Marotta, A.A., Buri, A., and Valent, G.L., J. Mater. Sci. 13, 2483 (1978).CrossRefGoogle Scholar
28.Kim, H.S., Rawlings, R.D., and Rogers, P.S., Br. Ceram. Proc. 42, 59 (1989).Google Scholar
29.Wang, M.C. and Hon, M.H., J. Ceram. Soc. Jpn. 100, 1285 (1992).CrossRefGoogle Scholar
30.Ray, C.R., Huang, W., and Day, D.E., J. Am. Ceram. Soc. 74, 160 (1991).CrossRefGoogle Scholar
31.Marotta, A., Buri, A., and Pernice, P., Phys. Chem. Glasses 21, 94 (1980).Google Scholar
32.Wang, M.C., J. Ceram. Soc. Jpn. 102, 109 (1994).CrossRefGoogle Scholar
33.Wang, M.C., J. Mater. Res. 14, 97 (1999).CrossRefGoogle Scholar
34.Wen, S.B., Yang, S., Chen, J.M., Wu, N.C., and Wang, M.C., (unpublished).Google Scholar
35.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
36.Johnson, W.A. and Mehl, R.F., Trans. Am. Inst. Met. Eng. 135, 416 (1938).Google Scholar
37.Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
38.Strnad, Z., Glass-Ceramic Materials (Elsevier, Amsterdam, 1986), pp. 6366.Google Scholar