Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T00:46:10.824Z Has data issue: false hasContentIssue false

Effect of the element ratio in the doping component on the properties of 0.975(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 ceramics

Published online by Cambridge University Press:  30 September 2020

Guangzhi Dong*
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China Institute for Superconducting and Electronic Materials, Australia Institute of Innovative Materials, University of Wollongong, Wollongong, New South Wales2522, Australia
Huiqing Fan
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Yuxin Jia
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A new series of ternary perovskite 0.975(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 (BNT–BKT–BMN, BMN-xyz) ceramics were designed and synthesized. The effect of the element ratio in the doping component BMN on the strain, ferroelectric, piezoelectric, and dielectric properties of the BNT–BKT matrix were studied. The BMN-430 composition without Nb element exhibits the typical features of non-ergodic relaxor, which is characterized by a higher piezoelectric coefficient d33 and a butterfly-shaped strain curve with negative strain. The introduction of trace Nb can significantly enhance the ergodicity of the system, reflecting in the high positive strain response and strain coefficient $\lpar {d_{33}^\ast \gt 750\;{\rm pm/V}} \rpar$ of BMN-321 composition. In contrast, there is no significant difference in the properties between the presence and absence of Mg element. The temperature-dependent electrical behaviors of BMN-xyz ceramics were analyzed based on impedance spectroscopy. This study may be helpful to the design of the chemical modification strategy for the BNT-based relaxor ferroelectrics.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smolensky, G.: New ferroelectrics of complex composition. IV. Sov. Phys. Solid State 2, 2651 (1961).Google Scholar
Takenaka, T., Masruyama, K-i., and Sakata, K.: (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991).CrossRefGoogle Scholar
Sasaki, A., Chiba, T., Mamiya, Y., and Otsuki, E.: Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564 (1999).Google Scholar
Shrout, T.R. and Zhang, S.J.: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 113 (2007).CrossRefGoogle Scholar
Zhang, S., Shrout, T.R., Nagata, H., Hiruma, Y., and Takenaka, T.: Piezoelectric properties in (K0.5Bi0.5)TiO3-(Na0.5Bi0.5)TiO3-BaTiO3 lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 910 (2007).CrossRefGoogle Scholar
Zhang, S-T., Kounga, A.B., Aulbach, E., Ehrenberg, H., and Rödel, J.: Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).Google Scholar
Zuo, R., Ye, C., Fang, X., and Li, J.: Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06 BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871 (2008).CrossRefGoogle Scholar
Zhang, S.T., Kounga, A.B., Jo, W., Jamin, C., Seifert, K., Granzow, T., Rödel, J., and Damjanovic, D.: High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716 (2009).CrossRefGoogle Scholar
Jo, W., Granzow, T., Aulbach, E., Rödel, J., and Damjanovic, D.: Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J. Appl. Phys. 105, 094102 (2009).CrossRefGoogle Scholar
Lee, H.J., Ural, S.O., Chen, L., Uchino, K., and Zhang, S.: High power characteristics of lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 3383 (2012).CrossRefGoogle Scholar
Wang, K., Hussain, A., Jo, W., and Rödel, J.: Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 95, 2241 (2012).Google Scholar
Liu, L., Knapp, M., Ehrenberg, H., Fang, L., Fan, H., Schmitt, L.A., Fuess, H., Hoelzel, M., Dammak, H., and Thi, M.P.: Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system. J. Eur. Ceram. Soc. 37, 1387 (2017).Google Scholar
Qi, H. and Zuo, R.: Giant electrostrictive strain in (Bi0.5Na0.5)TiO3–NaNbO3 lead-free relaxor antiferroelectrics featuring temperature and frequency stability. J. Mater. Chem. A 8, 2369 (2020).CrossRefGoogle Scholar
Jia, W., Hou, Y., Zheng, M., Xu, Y., Yu, X., Zhu, M., Yang, K., Cheng, H., Sun, S., and Xing, J.: Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc. 101, 3468 (2018).CrossRefGoogle Scholar
Zhou, X., Qi, H., Yan, Z., Xue, G., Luo, H., and Zhang, D.: Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3–NaTaO3 relaxor ferroelectrics. ACS Appl. Mater. Interfaces 11, 43107 (2019).Google ScholarPubMed
Zhu, C., Cai, Z., Luo, B., Guo, L., Li, L., and Wang, X.: High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A 8, 683 (2020).CrossRefGoogle Scholar
Zhang, L., Pu, Y., Chen, M., Wei, T., and Peng, X.: Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem. Eng. J. 383, 123154 (2020).CrossRefGoogle Scholar
Qiao, X., Zhang, F., Wu, D., Chen, B., Zhao, X., Peng, Z., Ren, X., Liang, P., Chao, X., and Yang, Z.: Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020).CrossRefGoogle Scholar
Yan, F., Huang, K., Jiang, T., Zhou, X., Shi, Y., Ge, G., Shen, B., and Zhai, J.: Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392400 (2020).CrossRefGoogle Scholar
Li, M., Pietrowski, M.J., De Souza, R.A., Zhang, H., Reaney, I.M., Cook, S.N., Kilner, J.A., and Sinclair, D.C.: A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31 (2014).CrossRefGoogle ScholarPubMed
Zang, J., Li, M., Sinclair, D.C., Jo, W., and Rödel, J.: Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J. Am. Ceram. Soc. 97, 1523 (2014).Google Scholar
Li, M., Zhang, H., Cook, S.N., Li, L., Kilner, J.A., Reaney, I.M., and Sinclair, D.C.: Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater. 27, 629 (2015).CrossRefGoogle Scholar
Yang, F., Li, M., Li, L., Wu, P., Pradal-Velázquez, E., and Sinclair, D.: Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J. Mater. Chem. A 6, 5243 (2018).CrossRefGoogle Scholar
Liu, X., Zhao, Y., Shi, J., Du, H., Xu, X., Lu, H., Che, J., and Li, X.: Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non-stoichiometry. J. Alloys Compd. 799, 231 (2019).CrossRefGoogle Scholar
Ren, P., Wang, J., He, J., Wang, Y., Yuan, H., Hao, Y., Frömling, T., Wan, Y., Shi, Y., and Zhao, G.: Ultrawide temperature range with stable permittivity and low dielectric loss in (1−x)[0.90Na0.5Bi0.5TiO3-0.10BiAlO3]-xNaNbO3 system. Adv. Electron. Mater. 6, 1901429 (2020).CrossRefGoogle Scholar
Ren, P., Wang, Y., Waidha, A., Clemens, O., and Lalitha, K.: Compositionally driven relaxor to ferroelectric crossover in (1−x) Na0.5Bi0.5TiO3xBiFeO3 (0≤x≤0.60). J. Mater. Chem. C 8, 86138621 (2020).Google Scholar
Ren, X.: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91 (2004).CrossRefGoogle ScholarPubMed
Liu, W. and Ren, X.: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).Google ScholarPubMed
Leontsev, S.O. and Eitel, R.E.: Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010).CrossRefGoogle ScholarPubMed
Ren, P., He, J., Wang, X., Sun, M., Zhang, H., and Zhao, G.: Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2. Scr. Mater. 146, 110 (2018).CrossRefGoogle Scholar
Wang, X., Wu, J., Xiao, D., Zhu, J., Cheng, X., Zheng, T., Zhang, B., Lou, X., and Wang, X.: Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136, 2905 (2014).Google ScholarPubMed
Wu, J., Xiao, D., and Zhu, J.: Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).CrossRefGoogle ScholarPubMed
Zheng, T., Wu, J., Xiao, D., Zhu, J., Wang, X., and Lou, X.: Potassium–sodium niobate lead-free ceramics: Modified strain as well as piezoelectricity. J. Mater. Chem. A 3, 1868 (2015).CrossRefGoogle Scholar
Ren, P., Liu, Z., Wei, M., Liu, L., Shi, J., Yan, F., Fan, H., and Zhao, G.: Temperature-insensitive dielectric and piezoelectric properties in (1-x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 ceramics. J. Eur. Ceram. Soc. 37, 2091 (2017).CrossRefGoogle Scholar
Hao, J., Li, W., Zhai, J., and Chen, H.: Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R: Rep. 135, 1 (2019).CrossRefGoogle Scholar
Hao, J., Bai, W., Li, W., Shen, B., and Zhai, J.: Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J. Appl. Phys. 114, 044103 (2013).CrossRefGoogle Scholar
Hao, J., Shen, B., Zhai, J., and Chen, H.: Phase transitional behavior and electric field-induced large strain in alkali niobate-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J. Appl. Phys. 115, 034101 (2014).CrossRefGoogle Scholar
Hao, J., Shen, B., Zhai, J., and Chen, H.: Effect of BiMeO3 on the phase structure, ferroelectric stability, and properties of lead-free Bi0.5(Na0.80K0.20)0.5TiO3 ceramics. J. Am. Ceram. Soc. 97, 1776 (2014).CrossRefGoogle Scholar
Shi, J., Fan, H., Liu, X., and Bell, A.J.: Large electrostrictive strain in (Bi0.5Na0.5) TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J. Am. Ceram. Soc. 97, 848 (2014).CrossRefGoogle Scholar
Shi, J., Fan, H., Liu, X., and Li, Q.: Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x (Bi0.2Sr0.7□ 0.1) xBa0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34, 3675 (2014).CrossRefGoogle Scholar
Liu, L., Shi, D., Knapp, M., Ehrenberg, H., Fang, L., and Chen, J.: Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J. Appl. Phys. 116, 184104 (2014).CrossRefGoogle Scholar
Dong, G., Fan, H., Shi, J., and Li, M.: Composition-and temperature-dependent large strain in (1−x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 ceramics. J. Am. Ceram. Soc. 98, 1150 (2015).CrossRefGoogle Scholar
Dong, G., Fan, H., Shi, J., and Li, Q.: Large strain response with low driving field in Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–Bi (Mg2/3Nb1/3)O3 ceramics. J. Am. Ceram. Soc. 101, 3947 (2018).CrossRefGoogle Scholar
Liu, X., Xue, S., Li, F., Ma, J., Zhai, J., Shen, B., Wang, F., Zhao, X., and Yan, H.: Giant electrostrain accompanying structural evolution in lead-free NBT-based piezoceramics. J. Mater. Chem. C 6, 814 (2018).CrossRefGoogle Scholar
Ren, P., Liu, Z., Liu, H., Sun, S., Wan, Y., Long, C., Shi, J., Chen, J., and Zhao, G.: Large electrostrain and structural evolution in (1-x)[0.94Bi0.5Na0.5TiO3-0.06 BaTiO3]-xAgNbO3 ceramics. J. Eur. Ceram. Soc. 39, 994 (2019).Google Scholar
Zhou, X., Yan, Z., Qi, H., Wang, L., Wang, S., Wang, Y., Jiang, C., Luo, H., and Zhang, D.: Electrical properties and relaxor phase evolution of Nb-Modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 39, 2310 (2019).CrossRefGoogle Scholar
West, A.R., Sinclair, D.C., and Hirose, N.: Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1, 65 (1997).CrossRefGoogle Scholar
Masó, N. and West, A.R.: Electrical properties of Ca-doped BiFeO3 ceramics: From p-type semiconduction to oxide-ion conduction. Chem. Mater. 24, 2127 (2012).CrossRefGoogle Scholar
Yang, F., Li, L., Wu, P., Pradal-Velázquez, E., Pearce, H.K., and Sinclair, D.C.: Use of the time constant related parameter fmax to calculate the activation energy of bulk conduction in ferroelectrics. J. Mater. Chem. C 6, 9258 (2018).CrossRefGoogle Scholar
Steiner, S., Seo, I-T., Ren, P., Li, M., Keeble, D.J., and Frömling, T.: The effect of Fe-acceptor doping on the electrical properties of Na1/2Bi1/2TiO3 and 0.94 (Na1/2Bi1/2)TiO3–0.06 BaTiO3. J. Am. Ceram. Soc. 102, 5295 (2019).CrossRefGoogle Scholar