Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T21:33:03.306Z Has data issue: false hasContentIssue false

Effect of ternary additions on the structural stability and electronic structure of intermetallic compounds: Al3Ti + Cu

Published online by Cambridge University Press:  31 January 2011

T. Hong
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208–3112
A.J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208–3112
Get access

Abstract

The effects of substituting Cu for either Ti or Al in Al3Ti were studied by the first-principles local density self-consistent linear muffin tin orbital method. The Cu atoms are found to strongly favor Al sites and to promote the stability of the L12 phase, in agreement with experiment. Surprisingly, the rigid band model is closely followed when Cu substitutes for Al. However, the structure of the density of states undergoes remarkable changes if Cu substitutes for Ti; a much weaker hybridization occurs in both L12- and DO22-like structures, giving rise to weaker binding effects. The modification of bond directionality upon Cu addition is determined by comparing the charge density for the structures calculated with those of pure Al3Ti. The effect of tetragonal distortion is also examined. By comparing with the bonding characteristics of pure Al3Ti in the L12 and DO22 structures, the addition of Cu to Al3Ti is found to be equivalent to the tetragonal distortion in DO22 Al3Ti as far as bonding is concerned, resulting in the stabilized L12-like structure for (AlCu)3Ti. The semi-empirical inverse relation between the structural stability and the density of states at Fermi energy is well established.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Stoloff, N. S., in Superalloys II (John Wiley & Sons, New York, 1987).Google Scholar
2Sastry, S. M. and Lipsitt, H. A., Metall. Trans. 8A, 1543 (1977).CrossRefGoogle Scholar
3Lipsitt, H. A., Shechtmann, D., and Schafrik, R. E., Metall. Trans. 11A, 1369 (1980).CrossRefGoogle Scholar
4Yamaguchi, M., Umakoshi, Y., and Yamane, T., Philos. Mag. A55, 301 (1987).CrossRefGoogle Scholar
5Nicholson, D. M., Stocks, G. M., Temmerman, W. M., Sterne, P., and Pettifor, D. G., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 17.Google Scholar
6Carlsson, A. E. and Meschter, P. J., J. Mater. Res. 4, 1060 (1989).CrossRefGoogle Scholar
7Hong, T., Watson-Yang, T. J., Freeman, A. J., Oguchi, T., and Xu, J-h., Phys. Rev. B 41, 12462 (1990).CrossRefGoogle Scholar
8Liu, C. T., Int. Met. Rev. 29, 168 (1984).CrossRefGoogle Scholar
9Raman, A. and Schubert, K., Z. Metallkd. 56, 99 (1965).Google Scholar
10Virdis, P. and Zwicker, V., Z. Metallkd. 62, 46 (1971).Google Scholar
11Mazdiyasni, S., Miracle, D. B., Dimiduk, D. M., Mendiratta, M. G., and Subramanian, P. R., Scripta Metall. 23, 327 (1989).CrossRefGoogle Scholar
12Markiv, V. Ya, Burnashova, V. V., and Ryabov, V. R., Akad. Nauk. Ukv. SSR Metall. 46, 103 (1973).Google Scholar
13Tarnacki, J. and Kim, Y-W., Scripta Metall. 22, 329 (1988).Google Scholar
14Maeland, A. J. and Narimhan, D., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 723.Google Scholar
15Huang, S. C., Hall, E. L., and Gigliotti, M. F. X., J. Mater. Res. 3, 1 (1988).CrossRefGoogle Scholar
16Nash, P. G., Bull. Alloy Phase Diagr. 3, 367 (1982).CrossRefGoogle Scholar
17Vasudevan, V. K., Wheeler, R., and Fraser, H. L., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 705.Google Scholar
18Seibold, A., Z. Metallkd. 72, 712 (1981).Google Scholar
19George, E. P., Porter, W. D., Henson, H. M., Oliver, W. C., and Oliver, B. F., J. Mater. Res. 4, 78 (1989).CrossRefGoogle Scholar
20George, E. P., Porter, W. D., and Joy, D. C., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 311.Google Scholar
21Kumar, K. S. and Pickens, J. R., in Dispersions Strengthened Aluminum Alloys, edited by Kim, Y-W. and Griffith, W. M. (TMS, Warrendale, PA, 1988).Google Scholar
22Porter, W. D., Hisatsune, K., Sparks, C. J., Oliver, W. C., and Dhere, A., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 657.Google Scholar
23Raman, A. and Schubert, K., Z. Metallkd. 56, 40 (1965).Google Scholar
24Subramanian, P. R., Simmons, J. P., Mendiratta, M. G., and Dimiduk, D. M., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 51.Google Scholar
25Fu, C. L., J. Mater. Res. 5, 971 (1990).CrossRefGoogle Scholar
26Andersen, O. K., Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
27Hohenberg, P. and Kohn, W., Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
28Kohn, W. and Sham, L. J.. Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
29Hong, T., Watson-Yang, T. J., Guo, X-Q., Freeman, A. J., Xu, J-H., and Oguchi, T. (to be published).Google Scholar
30Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallo-graphic Data for Intermetallic Phases (American Society for Metals, Metal Park, OH, 1985).Google Scholar
31Christensen, N. E., Phys. Rev. B 29, 5547 (1984).CrossRefGoogle Scholar
32Lin, W. and Freeman, A. J. (to be published).Google Scholar
33Lehman, G. and Taut, M., Phys. Status Solidi (b) 54, 469 (1972).Google Scholar
34Xu, J-H., Oguchi, T., and Freeman, A. J., Phys. Rev. B 36, 4186 (1987).Google Scholar
35Tardy, J. and Tu, K. N., Phys. Rev. B 32, 2070 (1985).CrossRefGoogle Scholar
36Guo, X-Q., Poudloucky, R., and Freeman, A. J., Phys. Rev. B 40, 2793 (1989).CrossRefGoogle Scholar