Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T22:48:26.697Z Has data issue: false hasContentIssue false

Effect of substrate materials on laser deposited Nd1.85Ce0.15CuO4−y films

Published online by Cambridge University Press:  03 March 2011

Beesabathina D. Prasad
Affiliation:
Center for Superconductivity Research, Materials and Nuclear Engineering Department, University of Maryland, College Park, Maryland 20742-2115
L. Salamanca-Riba
Affiliation:
Center for Superconductivity Research, Materials and Nuclear Engineering Department, University of Maryland, College Park, Maryland 20742-2115
S.N. Mao
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742
X.X. Xi
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742
T. Venkatesan
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742
X.D. Wu
Affiliation:
STC, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The growth morphology and interface structure of Nd1.85Ce0.15CuO4−y (NCCO) films grown by pulsed laser deposition on two different types of substrates, “perovskite” LaAlO3 (LAO) and SrTiO3 (STO) and “fluorite” Y2O3-stabilized ZrO2 (YSZ), were studied using cross-sectional electron microscopy. Structurally, the NCCO films are different when grown on the two types of substrates in three aspects: (i) epitaxy, (ii) substrate-film intermixing, and (iii) substrate-film interface roughness. In general, films deposited on “fluorite” substrates showed better superconducting properties than the films grown on “perovskite” substrates, especially for thinner films. Lattice mismatch considerations are not sufficient to explain the observed differences since films grown on the YSZ substrate showed sharp substrate-film interface in spite of their large lattice misfit. The atomic arrangements at the interface were analyzed in terms of electrostatic energy (charge balance) and matching of the oxygen sublattices in order to account for the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gupta, A., Koren, G., Tsuei, C. C., Segmüller, A., and McGuire, T. R., Appl. Phys. Lett. 55, 1795 (1989); Gupta, A., Gross, R., Olson, F., Segmüller, A., Koran, G., and Tsuei, C. C., Phys. Rev. Lett. 64, 3191 (1990).CrossRefGoogle Scholar
2Horwitz, J. S., Chrisey, D. B., Osofsky, M. S., Grabowski, K. S., and Vanderah, T. A., J. Appl. Phys. 70, 1045 (1991).CrossRefGoogle Scholar
3Mao, S. N., Xi, X. X., Bhattacharya, S., Li, Q., Venkatesan, T., Peng, J. L., Greene, R. L., Mao, J., Wu, D. H., and Anlage, S. M., Appl. Phys. Lett. 61, 2356 (1992).CrossRefGoogle Scholar
4Lu, Y., Hughes, R. A., Strach, T., Timusk, T., Poulin, D., and Preston, J. S., Physica C 197, 75 (1992).CrossRefGoogle Scholar
5Adachi, H., Hayashi, S., Setsune, K., Hatta, S., Mitsuyu, T., and Wasa, K., Appl. Phys. Lett. 54, 2713 (1989).Google Scholar
6Tale, J. and Hermann, B. A., unpublished research.Google Scholar
7Tietz, L. A., Carter, C. B., Lathrop, D. K., Russek, S. E., Buhrman, R. A., and Michael, J. R., J. Mater. Res. 4, 1072 (1989).CrossRefGoogle Scholar
8Ramesh, R., Inam, A., Hwang, D. M., Ravi, T. S., Sands, T., Xi, X. X., Wu, X. D., Li, Q., Venkatesan, T., and Kilaas, R., J. Mater. Res. 6, 2264 (1991).CrossRefGoogle Scholar
9Beesabathina, D. P., Salamanca-Riba, L., Mao, S. N., Xi, X. X., and Venkatesan, T., Appl. Phys. Lett. 62, 3022 (1993).Google Scholar
10Ramesh, R., Chang, C. C., Ravi, T. S., Hwang, D. M., Inam, A., Xi, X. X., Li, Q., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1064 (1990).CrossRefGoogle Scholar
11Mao, S. N., Xi, X. X., Li, Q., Venkatesan, T., Beesabathina, D. P., Salamanca-Riba, L., and Wu, X. D., J. Appl. Phys. 75, 2119 (1994).Google Scholar
12JCPDS Powder Diffraction File 28-270.Google Scholar
13JCPDS Powder Diffraction File 28-678.Google Scholar
14Sutton, A. P. and Balluffi, R. W., Acta Metall. 35, 2177 (1987).CrossRefGoogle Scholar