Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T22:27:36.191Z Has data issue: false hasContentIssue false

The effect of strain rate and temperature on the tensile properties of NiAl

Published online by Cambridge University Press:  31 January 2011

R.D. Noebe
Affiliation:
NASA Lewis Research Center, M.S. 49-3, Cleveland, Ohio 44135
C.L. Cullers
Affiliation:
NASA Lewis Research Center, M.S. 49-3, Cleveland, Ohio 44135
R.R. Bowman
Affiliation:
NASA Lewis Research Center, M.S. 49-3, Cleveland, Ohio 44135
Get access

Abstract

Tensile testing of cast and extruded binary NiAl was performed from 300 to 900 K at strain rates of 1.4 × 10−4 to 1.4 × 10−1 × s−1. The brittle-to-ductile transition temperature (BDTT) was dependent on strain rate, with a three order of magnitude increase in strain rate resulting in approximately a 200 K increase in transition temperature. Regardless of strain rate, at temperatures just above the BDTT the fracture strength increased significantly and the fracture morphology changed from mostly intergranular to predominantly transgranular. It was also determined that the mechanism responsible for the brittle-to-ductile transition in NiAl had an apparent activation energy of approximately 118 kJ/mol. These results support the argument that the mechanism for the brittle-to-ductile transition in NiAl is associated with the onset of a thermally activated deformation process. This process is probably dislocation climb controlled by short circuit diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whittenberger, J. D., Arzt, E., and Luton, M. J., J. Mater. Res. 5, 2819 (1990).CrossRefGoogle Scholar
2.Rozner, A. G. and Wasilewski, R. J., J. Inst. Metals 94, 169 (1966).Google Scholar
3.Raj, S. V., Noebe, R. D., and Bowman, R. R., Scripta Metall. 23, 2049 (1989).CrossRefGoogle Scholar
4.Noebe, R.D., Bowman, R.R., Cullers, C.L., and Raj, S.V., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 589.Google Scholar
5.Law, C.C. and Blackburn, M.J., AFWAL-TR-87–4102, Final Report, 1987.Google Scholar
6.Hahn, K. H. and Vedula, K., Scripta Metall. 23, 7 (1989).CrossRefGoogle Scholar
7.Mason, D.P., Van Aken, D.C., Noebe, R.D., Locci, I.E., and King, K. L., in High Temperature Ordered Intermetallic Alloys TV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 1033.Google Scholar
8.Schulson, E.M. and Barker, D.R., Scripta Metall. 17, 519 (1983).CrossRefGoogle Scholar
9.Schulson, E. M., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C.C., Liu, C.T., and Stoloff, N.S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 193.Google Scholar
10.George, E.P. and Liu, C.T., J. Mater. Res. 5, 754 (1990).CrossRefGoogle Scholar
11.George, E.P., Liu, C.T., and Liao, J.J., in Alloy Phase Stability and Design, edited by Stocks, G. M., Pope, D. P., and Giamei, A. F. (Mater. Res. Soc. Symp. Proc. 186, Pittsburgh, PA, 1991), p. 375.Google Scholar
12.Bowman, R. R., Noebe, R. D., Raj, S. V., and Locci, I. E., accepted by Metall. Trans. A, 1991.Google Scholar
13.Noebe, R.D., Bowman, R.R., Cullers, C.L., and Raj, S.V., in 3rd Annual HITEMP Review — 1990, NASA CP-10051, 1990, p. 20–1.Google Scholar
14.Grala, E. M., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley & Sons, Inc., New York, 1960), p. 358.Google Scholar
15.Westbrook, J.H., Grenoble, H.E., and Wood, D.L., WADD-TR-60–184 Part V, 1964, p. 22.Google Scholar
16.Ball, A. and Smallman, R. E., Acta Metall. 14, 1349 (1966).CrossRefGoogle Scholar
17.Ball, A. and Smallman, R.E., Acta Metall. 14, 1517 (1966)CrossRefGoogle Scholar
18.Kruisman, J.J., Vitek, V., and DeHosson, J.Th.M., Acta Metall. 36, 2729 (1988).CrossRefGoogle Scholar
19.Zeller, M. V., Noebe, R. D., and Locci, I. E., in 3rd Annual HITEMP Review — 1990, NASA CP-10051, 1990, p. 21–1.Google Scholar
20.Petton, G. and Farkas, D., Scripta Metall, 25, 55 (1991).CrossRefGoogle Scholar
21.Miracle, D., Acta Metall. Mater. 39, 1457 (1991).CrossRefGoogle Scholar
22.Barker, D.R., Thesis, M.E., Dartmouth College, Hanover, NH, 1982.Google Scholar
23.Graham, R.B., Thesis, M.E., Dartmouth College, Hanover, NH, 1984.Google Scholar
24.Pascoe, R.T. and Newey, C.W.A., Met. Sci. J. 2, 138 (1968).CrossRefGoogle Scholar
25.Reuss, S. and Vehoff, H., Scripta Metall. Mater. 24, 1021 (1990).CrossRefGoogle Scholar
26.Groves, G. W. and Kelly, A., Philos. Mag. 19, 977 (1969).CrossRefGoogle Scholar
27.Berkowitz, A. E., Jaumot, F. E., and Nix, F. C., Phys. Rev. 95, 1185 (1954).CrossRefGoogle Scholar
28.Hancock, . G. F. and McDonnell, B. R., Phys. Status Solidi(a) 4, 143 (1971).CrossRefGoogle Scholar
29.Vandervoort, . R. R., Mukherjee, A. K., and Dorn, J. E., Trans. ASM 59, 930 (1966).Google Scholar
30.Yang, W. J. and Dodd, R.A., Met. Sci. J. 7, 41 (1973).CrossRefGoogle Scholar
31.Whittenberger, . J. D.,J. Mater. Sci. 23, 235 (1988).CrossRefGoogle Scholar
32.Hancock, . J., Dillamore, I.L., and Smallman, R.E., Met. Sci. J. 6, 152 (1972).CrossRefGoogle Scholar
33.Smallman, . R. E., Modern Physical Metallurgy (Butterworth & Co., Boston, MA, 1985), 4th ed., pp. 448451.Google Scholar
34.Brophy, . H., Rose, R. M., and Wulff, J., Thermodynamics of Structure (John Wiley & Sons, Inc., New York, 1967), p. 82.Google Scholar
35.Shewmon, . P.G., Diffusion in Solids (McGraw-Hill Book Company, Inc., New York, 1983), p. 171.Google Scholar
36.Lahrman, . D. F., Field, R. D., and Darolia, R., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L.A., Pope, D. P., and Stiegler, J.O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 603.Google Scholar
37.Lasalmonie, . A., Lequeux, M. J., and Costa, P., in Proc. 5th Int. Conf. on Strength of Metals and Alloys, edited by Haasen, P., Gerold, V., and Kostorz, G. (Pergamon Press, New York, 1979), p. 1317.CrossRefGoogle Scholar
38.Noebe, . R. D. and Cotton, J. D., to be submitted to J. Mater. ResGoogle Scholar